Estudio del contenido histórico de metales pesados en lodos medicinales del río San Diego (Cuba) mediante técnicas analíticas nucleares

Oscar Díaz Rizo, Alina Gelen Rudnikas, Katia D´Alessandro Rodríguez

Resumen

Se determinan los niveles de metales pesados (Fe, Co, Ni, Cu, Zn y Pb) en perfiles de sedimentos del río San Diego, fechados con la técnica de y mediante la técnica de Fluorescencia de Rayos X. La normalización al hierro de los contenidos de metales pesados indicó el origen natural de los elementos Co, Ni, Cu y Zn, así como un muy moderado enriquecimiento en Pb, reflejando el bajo impacto antropogénico que ha tenido esta área en los últimos 100 años. Los niveles de metales pesados en los lodos más recientes (0-5 cm, en peso seco) fueron: Co = 18 ± 2, Ni = 62 ± 8, Cu = 52± 2, Zn = 72 ± 4 y Pb = 28 ± 2. La comparación con los contenidos de metales pesados, reportados en la literatura en lodos de uso medicinal, mostró que el contenido de metales pesados en los lodos del río San Diego es aceptable para su empleo con fines terapéuticos.

Palabras clave

sedimentos, análisis por fluorescencia de rayos x, metales pesados, usos terapéuticos, plomo 210, ríos, Cuba

Texto completo:

PDF Epub HTML

Referencias

VENIALE F. Thermal muds: Perspectives of innovations. Appl. Clay Sci. 2007; 36(1-3): 141-147.

CARRETERO MI. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 2002; 21(3): 155-163.

VENIALE F, BARBERIS E, CARCANGIU G, et. al. Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Appl. Clay Sci. 2004; 25(3-4): 135-148.

MASCOLO N, SUMMA V, TATEO F. In vivo experimental data on the mobility of hazardous chemical elements from clays. Appl. Clay Sci. 2004; 25(1-2): 23-28.

GOMES CSF, SILVA JBP. Minerals and clay minerals in medical geology. Appl. Clay Sci. 2007; 36(1-3): 4-21.

DYBCZYNSKI R, SUSCHNY O. Reference Material SL-1 “Lake sediment”. Report IAEA/RL/64. Vienna: IAEA, 1974.

DYBCZYNSKI R, TUGSAVUL A, SUSCHNY O. Soil-5, a new IAEA certified reference material for trace elements determinations. Geostand. Geoanalyt. Res. 2007; 3: 61-87.

PSZONICKI L. Reference material IAEA soil-7. Report IAEA/RL/112. Vienna: IAEA, 1984.

WILSON SA. The collection, preparation and testing of USGS reference material BCR-2, Columbia River, Basalt, U.S. Geological Survey Open-File Report 98-00x, 1997.

WinAxil. WinAxil code.Version 4.5.2. [software]. CANBERRA-MiTAC, 2005.

PADILLA R, MARKOWICZ A, WEGRZYNEK D, et. al. Quality management and method validation in EDXRF analysis. X-Ray Spectrom. 2007; 36(1): 27-34.

QUEVAUVILLER PH, MARRIER E. Quality assurance and quality control for environmental monitoring. Weinheim: VCH, 1995.

IAEA reference material 356 “polluted marine sediment”. IAEA/AL/080 Report. Vienna: IAEA, 1994.

SCHROPP SJ, LEWIS FG, WINDOM HL, et. al. Interpretation of metal concentration in estuarine sediments of Florida using aluminum as reference element. Estuaries. 1990; 13(3): 227-235.

VRECA P, DOLENEC T. Geochemical estimation of cooper contamination in the healing mud from Makirina Bay, central Adriatic. Environ. Internat. 2005; 31(1): 53-61.

MUCHA AP, VASCONCELOS MTSD, BORDALO AA. Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics. Environ. Pollut. 2003; 121(2): 169-180.

VILLARES R, PUENTE X, CARBALLEIRA A. Heavy metals in sandy sediments of the Rias Baixas (NW Spain). Environ. Monit.Assess. 2003; 83(2): 129-144.

GELEN A, SOTO J, GÓMEZ J, DÍAZ O. Sediment dating of Santander Bay, Spain. J. Radioanal. Nucl. Chem. 2004; 261(2): 437-441.

GÓMEZ J, SOTO J. Ejercicio de intercomparación de resultados de medida de radiactividad en la Red de Vigilancia Radiológica Ambiental. Madrid: Consejo de Seguridad Nuclear, 1998.

DÍAZ RIZO O, LÓPEZ PINO N, D´ALESSANDRO K, et. al. Characterization of the low-background gamma spectrometer at INSTEC for environmental radioactivity studies. Nucleus. 2009; (46): 21-26.

CURRIE LA. Limits for quantitative detection and quantitative determination. Anal. Chem. 1968; 40(3): 586-592.

ALONSO C, DÍAZ M, MUÑOZ A, et. al. Levels of radioactivity in the Cuban marine environment. Radiat. Prot. Dosim. 1998; 75(1-4): 69-70.

REYES H, LÓPEZ PINO N, DÍAZ RIZO O, et. al. Environmental radioactivity study in surface sediments of Guacanayabo gulf (Cuba). AIP Conf Proc. 2009; 1139: 156-157.

WALLING DE, HE Q. The global distribution of bomb-derives 137Cs reference inventories. Final Report on IAEA Technical Contract 10361/RO-R1. University of Exeter, 2000.

JETER HW. Determining the ages of recent sediments using measurements of trace radioactivity. Terra et Aqua. 2000; 78: 21-28.

National Office of Normalization. Norma Cubana (NC 6). Peloids. Specifications. Cuban national bureau of standards. Havana, 1998. (in Spanish).

LI YH. A compendium of geochemistry. Princeton: Princeton University Press, 2000.

MASCOLO N, SUMMA V, TATEO F. Characterization of toxic elements in clays for human healing use. Appl. Clay Sci. 1999; 15(5-6): 491-500.

SUMMA V, TATEO F. The use of pelitic raw materials in thermal centres: mineralogy, geochemistry, grain-size and leaching tests. Examples from Lucania area (southern Italy). Appl. Clay Sci. 1998; 12(5): 403-417.

CARRETERO MI, POZO M, MARTÍN RUBÍ JA, et. al. Mobility of elements in interaction between artificial sweat and peloids used in Spanish spas. Appl. Clay Sci. 2010; 48(3): 506-515.

MIKO S, KOCH G, MESIC S, et. al. Anthropogenic influence on trace element geochemistry of healing mud (peloid) from Makirina Cove (Croatia). Environ. Geol. 2008; 55(3): 517–537

TATEO F, SUMMA V. Element mobility in clays for healing use. Appl. Clay Sci. 2007; 36(1-3): 64-76.

TATEO F, RAVAGLIOLI A, ANDREOLI C, et. al. The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl. Clay Sci. 2009; 44(1-2): 83-94.