Estudio del contenido histórico de metales pesados en lodos medicinales del río San Diego (Cuba) mediante técnicas analíticas nucleares
Contenido principal del artículo
Resumen
Se determinan los niveles de metales pesados (Fe, Co, Ni, Cu, Zn y Pb) en perfiles de sedimentos del río San Diego, fechados con la técnica de y mediante la técnica de Fluorescencia de Rayos X. La normalización al hierro de los contenidos de metales pesados indicó el origen natural de los elementos Co, Ni, Cu y Zn, así como un muy moderado enriquecimiento en Pb, reflejando el bajo impacto antropogénico que ha tenido esta área en los últimos 100 años. Los niveles de metales pesados en los lodos más recientes (0-5 cm, en peso seco) fueron: Co = 18 ± 2, Ni = 62 ± 8, Cu = 52± 2, Zn = 72 ± 4 y Pb = 28 ± 2. La comparación con los contenidos de metales pesados, reportados en la literatura en lodos de uso medicinal, mostró que el contenido de metales pesados en los lodos del río San Diego es aceptable para su empleo con fines terapéuticos.
Detalles del artículo
Cómo citar
Díaz Rizo, O., Gelen Rudnikas, A., & D´Alessandro RodríguezK. (1). Estudio del contenido histórico de metales pesados en lodos medicinales del río San Diego (Cuba) mediante técnicas analíticas nucleares. Nucleus, (53). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/581
Número
Sección
Ciencias Nucleares

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
Citas
1. VENIALE F. Thermal muds: Perspectives of innovations. Appl. Clay Sci. 2007; 36(1-3): 141-147.
2. CARRETERO MI. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 2002; 21(3): 155-163.
3. VENIALE F, BARBERIS E, CARCANGIU G, et. al. Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Appl. Clay Sci. 2004; 25(3-4): 135-148.
4. MASCOLO N, SUMMA V, TATEO F. In vivo experimental data on the mobility of hazardous chemical elements from clays. Appl. Clay Sci. 2004; 25(1-2): 23-28.
5. GOMES CSF, SILVA JBP. Minerals and clay minerals in medical geology. Appl. Clay Sci. 2007; 36(1-3): 4-21.
6. DYBCZYNSKI R, SUSCHNY O. Reference Material SL-1 “Lake sediment”. Report IAEA/RL/64. Vienna: IAEA, 1974.
7. DYBCZYNSKI R, TUGSAVUL A, SUSCHNY O. Soil-5, a new IAEA certified reference material for trace elements determinations. Geostand. Geoanalyt. Res. 2007; 3: 61-87.
8. PSZONICKI L. Reference material IAEA soil-7. Report IAEA/RL/112. Vienna: IAEA, 1984.
9. WILSON SA. The collection, preparation and testing of USGS reference material BCR-2, Columbia River, Basalt, U.S. Geological Survey Open-File Report 98-00x, 1997.
10. WinAxil. WinAxil code.Version 4.5.2. [software]. CANBERRA-MiTAC, 2005.
11. PADILLA R, MARKOWICZ A, WEGRZYNEK D, et. al. Quality management and method validation in EDXRF analysis. X-Ray Spectrom. 2007; 36(1): 27-34.
12. QUEVAUVILLER PH, MARRIER E. Quality assurance and quality control for environmental monitoring. Weinheim: VCH, 1995.
13. IAEA reference material 356 “polluted marine sediment”. IAEA/AL/080 Report. Vienna: IAEA, 1994.
14. SCHROPP SJ, LEWIS FG, WINDOM HL, et. al. Interpretation of metal concentration in estuarine sediments of Florida using aluminum as reference element. Estuaries. 1990; 13(3): 227-235.
15. VRECA P, DOLENEC T. Geochemical estimation of cooper contamination in the healing mud from Makirina Bay, central Adriatic. Environ. Internat. 2005; 31(1): 53-61.
16. MUCHA AP, VASCONCELOS MTSD, BORDALO AA. Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics. Environ. Pollut. 2003; 121(2): 169-180.
17. VILLARES R, PUENTE X, CARBALLEIRA A. Heavy metals in sandy sediments of the Rias Baixas (NW Spain). Environ. Monit.Assess. 2003; 83(2): 129-144.
18. GELEN A, SOTO J, GÓMEZ J, DÍAZ O. Sediment dating of Santander Bay, Spain. J. Radioanal. Nucl. Chem. 2004; 261(2): 437-441.
19. GÓMEZ J, SOTO J. Ejercicio de intercomparación de resultados de medida de radiactividad en la Red de Vigilancia Radiológica Ambiental. Madrid: Consejo de Seguridad Nuclear, 1998.
20. DÍAZ RIZO O, LÓPEZ PINO N, D´ALESSANDRO K, et. al. Characterization of the low-background gamma spectrometer at INSTEC for environmental radioactivity studies. Nucleus. 2009; (46): 21-26.
21. CURRIE LA. Limits for quantitative detection and quantitative determination. Anal. Chem. 1968; 40(3): 586-592.
22. ALONSO C, DÍAZ M, MUÑOZ A, et. al. Levels of radioactivity in the Cuban marine environment. Radiat. Prot. Dosim. 1998; 75(1-4): 69-70.
23. REYES H, LÓPEZ PINO N, DÍAZ RIZO O, et. al. Environmental radioactivity study in surface sediments of Guacanayabo gulf (Cuba). AIP Conf Proc. 2009; 1139: 156-157.
24. WALLING DE, HE Q. The global distribution of bomb-derives 137Cs reference inventories. Final Report on IAEA Technical Contract 10361/RO-R1. University of Exeter, 2000.
25. JETER HW. Determining the ages of recent sediments using measurements of trace radioactivity. Terra et Aqua. 2000; 78: 21-28.
26. National Office of Normalization. Norma Cubana (NC 6). Peloids. Specifications. Cuban national bureau of standards. Havana, 1998. (in Spanish).
27. LI YH. A compendium of geochemistry. Princeton: Princeton University Press, 2000.
28. MASCOLO N, SUMMA V, TATEO F. Characterization of toxic elements in clays for human healing use. Appl. Clay Sci. 1999; 15(5-6): 491-500.
29. SUMMA V, TATEO F. The use of pelitic raw materials in thermal centres: mineralogy, geochemistry, grain-size and leaching tests. Examples from Lucania area (southern Italy). Appl. Clay Sci. 1998; 12(5): 403-417.
30. CARRETERO MI, POZO M, MARTÍN RUBÍ JA, et. al. Mobility of elements in interaction between artificial sweat and peloids used in Spanish spas. Appl. Clay Sci. 2010; 48(3): 506-515.
31. MIKO S, KOCH G, MESIC S, et. al. Anthropogenic in?uence on trace element geochemistry of healing mud (peloid) from Makirina Cove (Croatia). Environ. Geol. 2008; 55(3): 517–537
32. TATEO F, SUMMA V. Element mobility in clays for healing use. Appl. Clay Sci. 2007; 36(1-3): 64-76.
33. TATEO F, RAVAGLIOLI A, ANDREOLI C, et. al. The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl. Clay Sci. 2009; 44(1-2): 83-94.
2. CARRETERO MI. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 2002; 21(3): 155-163.
3. VENIALE F, BARBERIS E, CARCANGIU G, et. al. Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Appl. Clay Sci. 2004; 25(3-4): 135-148.
4. MASCOLO N, SUMMA V, TATEO F. In vivo experimental data on the mobility of hazardous chemical elements from clays. Appl. Clay Sci. 2004; 25(1-2): 23-28.
5. GOMES CSF, SILVA JBP. Minerals and clay minerals in medical geology. Appl. Clay Sci. 2007; 36(1-3): 4-21.
6. DYBCZYNSKI R, SUSCHNY O. Reference Material SL-1 “Lake sediment”. Report IAEA/RL/64. Vienna: IAEA, 1974.
7. DYBCZYNSKI R, TUGSAVUL A, SUSCHNY O. Soil-5, a new IAEA certified reference material for trace elements determinations. Geostand. Geoanalyt. Res. 2007; 3: 61-87.
8. PSZONICKI L. Reference material IAEA soil-7. Report IAEA/RL/112. Vienna: IAEA, 1984.
9. WILSON SA. The collection, preparation and testing of USGS reference material BCR-2, Columbia River, Basalt, U.S. Geological Survey Open-File Report 98-00x, 1997.
10. WinAxil. WinAxil code.Version 4.5.2. [software]. CANBERRA-MiTAC, 2005.
11. PADILLA R, MARKOWICZ A, WEGRZYNEK D, et. al. Quality management and method validation in EDXRF analysis. X-Ray Spectrom. 2007; 36(1): 27-34.
12. QUEVAUVILLER PH, MARRIER E. Quality assurance and quality control for environmental monitoring. Weinheim: VCH, 1995.
13. IAEA reference material 356 “polluted marine sediment”. IAEA/AL/080 Report. Vienna: IAEA, 1994.
14. SCHROPP SJ, LEWIS FG, WINDOM HL, et. al. Interpretation of metal concentration in estuarine sediments of Florida using aluminum as reference element. Estuaries. 1990; 13(3): 227-235.
15. VRECA P, DOLENEC T. Geochemical estimation of cooper contamination in the healing mud from Makirina Bay, central Adriatic. Environ. Internat. 2005; 31(1): 53-61.
16. MUCHA AP, VASCONCELOS MTSD, BORDALO AA. Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics. Environ. Pollut. 2003; 121(2): 169-180.
17. VILLARES R, PUENTE X, CARBALLEIRA A. Heavy metals in sandy sediments of the Rias Baixas (NW Spain). Environ. Monit.Assess. 2003; 83(2): 129-144.
18. GELEN A, SOTO J, GÓMEZ J, DÍAZ O. Sediment dating of Santander Bay, Spain. J. Radioanal. Nucl. Chem. 2004; 261(2): 437-441.
19. GÓMEZ J, SOTO J. Ejercicio de intercomparación de resultados de medida de radiactividad en la Red de Vigilancia Radiológica Ambiental. Madrid: Consejo de Seguridad Nuclear, 1998.
20. DÍAZ RIZO O, LÓPEZ PINO N, D´ALESSANDRO K, et. al. Characterization of the low-background gamma spectrometer at INSTEC for environmental radioactivity studies. Nucleus. 2009; (46): 21-26.
21. CURRIE LA. Limits for quantitative detection and quantitative determination. Anal. Chem. 1968; 40(3): 586-592.
22. ALONSO C, DÍAZ M, MUÑOZ A, et. al. Levels of radioactivity in the Cuban marine environment. Radiat. Prot. Dosim. 1998; 75(1-4): 69-70.
23. REYES H, LÓPEZ PINO N, DÍAZ RIZO O, et. al. Environmental radioactivity study in surface sediments of Guacanayabo gulf (Cuba). AIP Conf Proc. 2009; 1139: 156-157.
24. WALLING DE, HE Q. The global distribution of bomb-derives 137Cs reference inventories. Final Report on IAEA Technical Contract 10361/RO-R1. University of Exeter, 2000.
25. JETER HW. Determining the ages of recent sediments using measurements of trace radioactivity. Terra et Aqua. 2000; 78: 21-28.
26. National Office of Normalization. Norma Cubana (NC 6). Peloids. Specifications. Cuban national bureau of standards. Havana, 1998. (in Spanish).
27. LI YH. A compendium of geochemistry. Princeton: Princeton University Press, 2000.
28. MASCOLO N, SUMMA V, TATEO F. Characterization of toxic elements in clays for human healing use. Appl. Clay Sci. 1999; 15(5-6): 491-500.
29. SUMMA V, TATEO F. The use of pelitic raw materials in thermal centres: mineralogy, geochemistry, grain-size and leaching tests. Examples from Lucania area (southern Italy). Appl. Clay Sci. 1998; 12(5): 403-417.
30. CARRETERO MI, POZO M, MARTÍN RUBÍ JA, et. al. Mobility of elements in interaction between artificial sweat and peloids used in Spanish spas. Appl. Clay Sci. 2010; 48(3): 506-515.
31. MIKO S, KOCH G, MESIC S, et. al. Anthropogenic in?uence on trace element geochemistry of healing mud (peloid) from Makirina Cove (Croatia). Environ. Geol. 2008; 55(3): 517–537
32. TATEO F, SUMMA V. Element mobility in clays for healing use. Appl. Clay Sci. 2007; 36(1-3): 64-76.
33. TATEO F, RAVAGLIOLI A, ANDREOLI C, et. al. The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl. Clay Sci. 2009; 44(1-2): 83-94.