Risk analysis in the production of freeze-dried kits for technetium-99m labeling of monoclonal antibodies

Main Article Content

Anaís Prats Capote
Zayda Amador Balbona
Jorge Cruz Arencibia
Alejandro Alberti Ramírez
Gracys García González
Marilin Castro Isaac
Marilin Castro Isaac
Karina Suárez Beyres
Amed Cruz Morales
Alejandro Perera Pintado
Rolando Serra Águila
Madian Pino Peraza
René Leyva Montaña

Abstract

The obtainment of the Sanitary License for Pharmaceutical Operations requires the risks analysis of quality in the manufacturing process of each product. The main aim of the present work was to apply this evaluation to the production process of freeze-dried kit for labeling with Technetium-99m of monoclonal antibodies, which are developed in the Isotope Center. The failure modes and effects analysis technique and the Cuban code SECURE-MR-FMEA version 3.0 were used. The lifting of the sub-processes, stages and failure modes was carried out through brainstorming. A task group of experts reconciled their results and determined the most influential causes. The model consists of ten sub-processes, 28 stages, and 40 failure modes. Of the 98 possible combinations, 39 Sub-Process-Stage-Failure Mode-Cause ones were identified, with a risk priority number (RPN) ≥100 and a severity index (ISev) ≥7. The most contributing sub-processes were: manufacturing, conditioning and sanitizing of the clean area, preparation of glassware and materials, and the obtaining of the water for injection. The most important causes were: qualification and training of the staff; non-compliance with practices, protocols, procedures or standards; and the use of qualified equipment. The results of the sensitivity analysis showed that the solution of these causes makes possible a significant reduction of the risks of the manufacture process and, thus, contributes the compliance with good manufacturing practices, with the priority of actions and resources in these directions.

Article Details

How to Cite
Prats Capote, A., Amador Balbona, Z., Cruz Arencibia, J., Alberti Ramírez, A., García González, G., Castro Isaac, M., Castro Isaac, M., Suárez Beyres, K., Cruz Morales, A., Perera Pintado, A., Serra Águila, R., Pino Peraza, M., & Leyva Montaña, R. (2022). Risk analysis in the production of freeze-dried kits for technetium-99m labeling of monoclonal antibodies. Nucleus, (70). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/751
Section
Ciencias Nucleares

References

[1]. PRATS A, LEYVA R, ATIES RC, PERERA A. La imagen nuclear con anticuerpos monoclonales radiomarcados, viejas aplicaciones con nuevos enfoques. Nucleus. 2020; (67): 22-27.
[2]. PEÑA Y, PERERA A, BATISTA JF. Immunoscintigraphy and Radioimmunotherapy in Cuba: Experiences with Labeled Monoclonal Antibodies for Cancer Diagnosis and Treatment (1993-2013). MEDICC Review. 2014; 16 (3-4): 55-60.
[3]. Centro para el Control Estatal de Equipos y Medicamentos (CECMED). Resolución CECMED No. 155/2012. Aprueba la Guía de administración de riesgos a la calidad.
[4]. OJEDA Y, HEYNNGNEZZ L, GARCÍA J, VALDÉS Y, et. al. Aplicación del análisis de riesgo en la preparación de soluciones para producción de Quimi-Hib®. VacciMonitor. 2013; 22(2): 19-23. Disponible en: www.finlay.sld.cu/vaccimonitor.htm.
[5]. Oficina Nacional de Normalización. Sistemas de Gestión de la Calidad. Requisitos. NC ISO 9001. La Habana, 2015. [consulta: 10/10/2019]. Disponible en: http://www.nc.cubaindustria.cu.
[6]. Oficina Nacional de Normalización. Gestión del riesgo-principios y directrices. NC-ISO 31000, 2019. [consulta: 10/10/2019]. Disponible en: http://www.nc.cubaindustria.cu.
[7]. TORRES VALLE A. Programa de análisis de riesgo basado en matriz de riesgo y FMEA. Manual de Usuario SECURE-MR-FMEA 3.0. La Habana, 2017.
[8]. GARCÍA J, SANTANA Z, ZUMALACÁRREGUI L, QUINTANA M, et. al. Aplicación del análisis de riesgo a la producción de proteínas recombinantes expresadas en Escherichia coli. VacciMonitor. 2012; 21(2): 35-42. Disponible en: www.finlay.sld.cu/vaccimonitor.htm.
[9]. AMADOR BALBONA Z, TORRES VALLE A. Causas básicas de fallos aplicadas al análisis de riesgo en práctica médicas con radiaciones ionizantes [Internet]. Revista Cubana de Salud y Trabajo 20(2):11-8 2019 [consulta: 03/11/2019]. Disponible en: http://www.revsaludtrabajo.sld.cu/index.php/revsyt/article/view/99.
[10]. Centro para el Control Estatal de Medicamentos, Equipos y Dispositivos Médicos (CECMED). Buenas prácticas farmacéuticas. Sistema regulador en Cuba. Segunda edición. La Habana: CECMED, 2017.
[11]. GUTIÉRREZ PULIDO H. Calidad total y productividad. México. 3era Edición. McGraw-Hill/Interamericana Editores, S.A. de C.V., 2010.
[12]. DA SILVA TEIXEIRA F, DE ALMEIDA C, SAIFUL HUQ M. Failure mode and effect analysis based risk profile assessment for stereotactic radiosurgery programs at three cancer centers in Brazil. Medical Physics. 2016; 43(1): 171-8.
[13]. ROY S, RUITBERG C, SETHURAMAN A. Troubleshooting During the Manufacture of Lyophilized Drug Product- Being Prepared for the Unexpected [Internet]. [consulta: 04/02/2021]. Disponible en: www.americanpharmaceuticalreview.com/Featured-Articles/126958.
[14]. Assure Batch Uniformity for Freeze-Dried Products. [Internet]. [consulta: 04/02/2021]. Disponible en: https://www.pharmamanufacturing.com/articles/2005/191.
[15]. SALAZAR MACIAN R. Problemas tecnológicos en la fabricación de medicamentos. Apuntes sobre tecnología farmacéutica. Barcelona, 2015. [consulta: 05/03/2021]. Disponible en: http://hdl.handle.net/2445/68462.
[16]. COOKE D, DUBETZ M, HESHMATI R, IFTODY S, et. al. A reference guide for learning from incidents in radiation treatment. Alberta Heritage Foundation for Medical Research, 2006.

Most read articles by the same author(s)