La imagen nuclear con anticuerpos monoclonales radiomarcados: viejas aplicaciones con nuevos enfoques

Contenido principal del artículo

Anaís Prats Capote
René Leyva Montaña
Regla Caridad Atiés Pérez
Alejandro Perera Pintado

Resumen

Los anticuerpos monoclonales marcados con radionucleidos fueron en sus inicios ampliamente empleados para el estudio de diversas enfermedades, fundamentalmente oncológicas mediante la inmunogammagrafía. Estos fueron poco a poco sustituidos por moléculas con mejores prestaciones como los péptidos y la 18F-fluordesoxiglucosa (18F-FDG). No obstante, en el presente siglo, la amplia introducción de la inmunoterapia produjo un cambio de paradigma en cuanto al empleo de los anticuerpos monoclonales radiomarcados para la adecuada selección y seguimiento de los pacientes a ser tratados con inmunoterapia, resurgiendo la inmunotomografía por emisión de fótón único (inmuno-SPECT), la inmunotomografía por emisión de positrones (inmuno-PET) y la imagen corregistrada con la tomografía axial computarizada (TAC), como modalidades de gran valor en el manejo del cáncer. El objetivo del presente trabajo fue brindar una panorámica acerca de la evolución de la imagen nuclear con anticuerpos monoclonales radiomarcados y sus principales aplicaciones en el tiempo, fundamentalmente en el estudio de los pacientes con cáncer.

Detalles del artículo

Cómo citar
Prats Capote, A., Leyva Montaña, R., Atiés Pérez, R. C., & Perera Pintado, A. (1). La imagen nuclear con anticuerpos monoclonales radiomarcados: viejas aplicaciones con nuevos enfoques. Nucleus, (67). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/699
Sección
Panorama Nuclear

Citas

[1] WU M, SHU J. Multimodal molecular imaging: current status and future directions. Contrast Media Mol Imaging. 2018: 1382183. doi: 10.1155/2018/1382183. eCollection 2018.
[2] FLEUREN EDG, VERSLEIJEN-JONKERS YMH, HESKAMP S, VAN HERPEN CML, et al. Theranostic applications of antibodies in oncology. Molecular Oncology. 2014; 8(4): 799-812.
[3] KHALIL MM, TREMOLEDA JL, BAYOMY TB, GSELL W. Molecular SPECT imaging: an overview. International Journal of Molecular Imaging. 2011; Article ID 796025. https://doi.org/10.1155/2011/796025.
[4] BAILLY C, BODET-MILIN C, ROUSSEAU C, FAIVRE-CHAUVET A,et. al. Pretargeting for imaging and therapy in oncological nuclear medicine. EJNMMI Radiopharm Chem. 2017; 2(1): 6. https://doi.org/10.1186/s41181-017-0026-8.
[5] CHATAL JF, PELTIER P, BARDIES M, CHÉTANNEAU A, et. al. Does immunoscintigraphy serve clinical needs effectively? Is there a future for radioimmunotherapy? Eur J Nucl Med. 1992; 19(3): 205-213.
[6] BISCHOF DELALOYE A, DELALOYE B. Radiolabelled monoclonal antibodies in tumour imaging and therapy: out of fashion? Eur J Nucl Med . 1995; 22(6): 571-580.
[7] BISCHOF DELALOYE A, DELALOYE B. Tumor imaging with monoclonal antibodies. Semin Nucl Med. 1995; 25(2): 144-164.
[8] HNATOWICH DJ. Is Technetium-99m the radioisotope of choice for radioimmunoscintigraphy? J Nucl Biol Med. 1994; 38 (4 Suppl 1): 22-32.
[9] RAMOS M, PERERA A, RODRÍGUEZ N, OLIVA JP, et. al. Diagnostic efficacy and safety of 99mTc-labeled monoclonal antibody ior c5 in patients with colorectal and anal carcinomas. Final report clinical trial Phase I/II. Cancer Biology & Therapy. 2007; 6(1): 22-29.
[10] SOLANO ME, PERERA A, BATISTA JF, CANDEBAT Z, et. al. Immunoscintigraphic diagnosis of ovarian cancer with Tc-99m labeled MAb ior-c5: First Clinical Results. World J Nucl Med. 2003; 2: 30-36.
[11] LARSON SM. Radioimmunology. Imaging and therapy. Cancer. 1991; 67(4 Suppl): 1253-1260.
[12] RAMOS M, RODRÍGUEZ N, OLIVA JP, IZNAGA N, et. al. 99mTc-labeled anti-human epidermal growth factor receptor antibody (ior egf/r3) in patients with tumor of epithelial origin: Part III. Clinical trials safety and diagnostic efficacy. J. Nucl. Med. 1999; 40(5): 768-775.
[13] MELLER J, LIERSCH T, OEZERDEN MM, SAHLMANN CO, et. al. Targeting NCA-95 and other granulocyte antigens and receptors with radiolabeled monoclonal antibodies (Mabs). Q J Nucl Med Mol Imaging. 2010; 54(6): 582-598.
[14] GOLDSMITH SJ, SIGNORE A. An overview of the diagnostic and therapeutic use of monoclonal antibodies in medicine. Q J Nucl Med Mol Imaging . 2010; 54: 574-581.
[15] KINNE R W, EMMRICH F, FREESMEYER M. Clinical impact of radiolabeled anti-CD4 antibodies in the diagnosis of rheumatoid arthritis. Q J Nucl Med Mol Imaging . 2010; 54(6): 629-638.
[16] ZAYAS F, FRAXEDAS R, REYES L, PERERA A, et. al. Evaluación del 99mTc-ior t3 como radiotrazador del rechazo agudo del trasplante renal. Rev Esp Med Nucl. 1997; 16(5): 329-330.
[17] TORRES LA, PERERA A, BATISTA JF, HERNÁNDEZ A, et. al. Phase I/II clinical trial of the humanized anti-EGF-r monoclonal antibody h-R3 labelled with 99mTc in patients with tumour of epithelial origin. Nucl Med Commun. 2005; 26(12):1049-1057.
[18] PEÑA Y, PERERA A, BATISTA JF. Immunoscintigraphy and radioimmunotherapy in cuba: experiences with labeled monoclonal antibodies for cancer diagnosis and treatment (1993-2013). MEDICC Review. 2014; 16 (3-4): 55-60.
[19] KAUR S, VENKTARAMAN G, JAIN M, SENAPATI S, et. al. Recent trends in antibody-based oncologic imaging. Cancer Lett. 2012; 315(2): 97-111.
[20] VAN DONGEN GAMS, VISSER GWM, LUB DE HOOGE MN, DE VRIES EG, et. al. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist. 2007; 12(12): 1379-1389.
[21] BAILLY C, CLÉRY PF, FAIVRE A, BOURGEOIS M, et. al. Immuno-PET for clinical theranostic approaches. Int. J. Mol. Sci. 2017; 18(1): 57-68.
[22] TORNESELLO AL, BUONAGURO L, TORNESELLO ML, BUONAGURO FM. New insights in the design of bioactive peptides and chelating agents for imaging and therapy in oncology. Molecules. 2017; 22(8): 1282.
[23] THOMAS A, TEICHER BA, HASSAN R. Antibody-drug conjugates for cancer therapy. Lancet Oncol. 2016; 17(6): e254-e262.
[24] HOLLINGSWORTH RE, JANSEN K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines. 2019; 4: 7. https://doi.org/10.1038/s41541-019-0103-y eCollection 2019.
[25] LAMBERTS LE, WILLIAMS SP, TERWISSCHA VAN SCHELTINGA AGT, LUBDE HOOGE MN, et. al. Antibody positron emission tomography imaging in anticancer drug development. J Clin Oncol. 2015; 33(13): 1491-1504.
[26] ALUICIO E, ELLISON PA, BARNHART TE, CAI W, et. al. PET radiometals for antibody labeling. J Labelled Comp Radiopharm. 2018; 61(9): 636-651.
[27] KRAEBER F, BAILLY C, CHÉREL M, CHATAL JF. ImmunoPET to help stratify patients for targeted therapies and to improve drug development. Eur J Nucl Med Mol Imaging. 2016; 43(12): 2166-2168.
[28] KUTOVA OM, GURYEV EL, SOKOLOVA EA, ALZEIBAK R, et. al. Targeted delivery to tumors: multidirectional strategies to improve treatment efficiency. Cancers. 2019; 11(1): 68.
[29] GEBHART G, LAMBERTS LE, WIMANA Z, GARCIA C, et. al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): The ZEPHIR trial. Ann. Oncol. 2016; 27(4): 619-624.
[30] PEÑA Y, CROMBET T, BATISTA JF, PRATS A, et. al. Immunoscintigraphy with 99mTc-Nimotuzumab for planning immunotherapy in patients with bone metastases due to prostate cancer. Clin Nucl Med. 2016; 41(3): 244-246.
[31] PEÑA Y, CROMBET T, VERGARA A, BATISTA JF, et. al. Immunoscintigraphy with 99mTc-14F7 and 99mTc-Nimotuzumab in patients with non-small cell lung cancer. Trends Cancer Res Chemother. 2018; 1(2): 1-2.
[32] PERERA A, TORRES LA, VERGARA A, BATISTA JF, et. al. SPECT/CT: principales aplicaciones en la medicina nuclear. Nucleus. 2017; (62): 2-9.
[33] ZHANG Y, HAO H, WEIBO C. PET tracers based on Zirconium-89. Curr Radiopharm. 2011; 4(2): 131-9.
[34] RÖSCH F, HERZOG H, QAIM SM. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017; 10(2): 56.
[35] DIVGI CR, UZZO RG, GATSONIS C, BARTZ R, et. al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: Results from the REDECT trial. J. Clin. Oncol. 2013; 31(2): 187-194.
[36] MENDLER CT, GEHRING T, WESTER HJ, SCHWAIGER M, et. al. 89Zr-labeled versus 124I-labeled ????HER2 fab with optimized plasma half-life for high-contrast tumor imaging in vivo. J. Nucl. Med. 2015; 56(7): 1112-1118.
[37] BHATT NB, PANDYA DN, WADAS TJ. Recent advances in Zirconium-89 chelator development. Molecules 2018; 23(3): 638. https://doi.org/10.3390/molecules23030638.
[38] LIU S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev. 2008; 60(12): 1347-1370.
[39] OSBORNE JR, GREEN DA, SPRATT DE, LYASHCHENKO S, et. al. A prospective pilot study of 89Zr-J591/prostate specific membrane antigen positron emission tomography in men with localized prostate cancer undergoing radical prostatectomy. J. Urol. 2014; 191(5): 1439-1445.
[40] BORJESSON PK, JAUW YW, BOELLAARD R, DE BREE R, et. al. Performance of immuno-positron emission tomography with zirconium-89-labeled chimeric monoclonal antibody U36 in the detection of lymph node metastases in head and neck cancer patients. Clin Cancer Res. 2006; 12(7 Pt 1): 2133-2140.
[41] BAHCE I, HUISMAN MC, VERWER EE, OOIJEVAAR R, et. al. Pilot study of 89Zr-bevacizumab positron emission tomography in patients with advanced non-small cell lung cancer. EJNMMI Res. 2014; 4(1): 35. https://doi.org/10.1186/s13550-014-0035-5
[42] ZALUTSKY MR. Potential of immuno-positron emission tomography for tumor imaging and immunotherapy planning. Clin Cancer Res . 2006; 12(7 Pt 1): 1958-1960.
[43] MENKE CW, GOOTJES EC, HUISMAN MC, VUGTS DJ, et. al. 89Zr-cetuximab PET imaging in patients with advanced colorectal cancer. Oncotarget. 2015; 6(30): 30384-30393.
[44] FOLLACCHIO GA, DE FEO MS, MONTELEONE F, DE VINCENTIS G, et. al. Radiopharmaceuticals labelled with copper radionuclides: Clinical results in human beings. Curr. Radiopharm. 2018; 11(1): 22-23.
[45] SASADA S, KURIHARA H, KINOSHITA T, YOSHIDA M, et. al. 64Cu-DOTA-Trastuzumab PET imaging for HER2-specific primary lesions of breast cancer. Ann Oncol. 2017; 28(8): 2028-2029.
[46] MORTIMER JE, BADING JR, PARK JM, FRANKEL PH, et. al. Tumor uptake of 64Cu-DOTA-trastuzumab in patients with metastatic breast cancer. J Nucl Med. 2018; 59(1): 38-43.
[47] BAILLY C, GOUARD S, GUÉRARD F, CHALOPIN B, et. al. What is the best radionuclide for Immuno-PET of multiple myeloma? A comparison study between 89Zr- and 64Cu-labeled Anti-CD138 in a preclinical syngeneic model. Int. J. Mol. Sci. 2019; 20(10): 2564.
[48] ULANER GA, HYMAN DM, LYASHCHENKO SK, LEWIS JS, et. al. 89Zr-Trastuzumab PET/CT for detection of human epidermal growth factor receptor 2-positive metastases in patients with human epidermal growth factor receptor 2-negative primary breast cancer. Clin Nucl Med . 2017; 42(12): 912-917.
[49] BERG E, GILL H, MARIK J, OGASAWARA A, WILLIAMS S, et. al. Total-body PET and highly stable chelators together enable meaningful 89Zr-antibody-PET studies up to 30 days postinjection. J Nucl Med . 2020; 61(3): 453-460.
[50] TORRES LA, COCA MA, BATISTA JF, CASACÓ A, et. al. Biodistribution and internal dosimetry of the 188Re-labelled humanized monoclonal antibody anti-epidemal growth factor receptor, nimotuzumab, in the locoregional treatment of malignant gliomas. Nucl Med Comm. 2008; 29(1): 66-75.

Artículos más leídos del mismo autor/a