Itrio 90 como radionúclido para terapia
Contenido principal del artículo
Resumen
El es un emisor beta puro con período de semidesintegración de 64.1 horas y 2.28 MeV de energía, características apropiadas para su uso como radionúclido terapéutico. Radiofármacos de han sido efectivos en el tratamiento de diferentes enfermedades como sinovitis crónica, cáncer de hígado, dolor por metástasis óseas y tumores de origen neuroendocrino. Mención aparte merecen los resultados en el tratamiento de los linfomas no-Hodgkin, que combinan la especificidad de un anticuerpo monoclonal por el antígeno CD20 y la energía beta pura del . Aunque el período de semidesintegración del permite su transportación, se comercializa a precios elevados para una utilización sistemática o a gran escala. El hecho de que se pueda obtener a través de un generador radisotópico, basado en el equilibrio secular que se establece con el , hace que su producción local sea atractiva, pues reduciría significativamente los costos y facilitaría su disponibilidad. En este trabajo se exponen las vías para obtener , aspectos relacionados con la calidad del producto final, sus principales aplicaciones y los resultados obtenidos en el Centro de Isótopos.
Detalles del artículo
Cómo citar
Alberti Ramírez, A. (1). Itrio 90 como radionúclido para terapia. Nucleus, (52). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/574
Sección
Ciencias Nucleares
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
Citas
1. FERRARI M, CREMONESI M, BARTOLOMEI M, et al. Dosimetric model for locoregional treatment of brain tumours with 90Y conjugates: clinical applications with 90Y-DOTATOC. J Nucl Med. 2006; 47(1): 105-12.
2. GOING JE, ROBERTS CA, DANCEY JE, et. al. Treatment of unresectable metastatic coloretal carcinoma to the liver with intrahepatic microspheres: Dose-ranging study. World J Nucl. Med. 2003; 2(3): 216-225.
3. KAMPEN WU, VOTH M, PINKERT J, KRAUSE A. Therapeutic status of radiosynoviorthesis of the knee with yttrium [90Y] colloid in rheumatoid arthritis and related indications. Rheumatology. 2007; 46(1): 16-24.
4. KUTZNER J, DAHNERT W, SCHREYER T, et. al. Treatment of pains from bone metastases with 90Y. Nuklearmedizin. 1981; 20(5): 229-35.
5. MULTIBONE (EDTMP) (Y-IK-26) Summary of Product Characteristics. (Prospecto médico).
6. DAVIES AJ. Radioimmunotherapy for B-cell lymphoma: Y-90 ibritumomab
tiuxetan and I-131 tositumomab. Oncogene, 2007; 26(25): 3614-28.
7. CHAKRAVARTY R, PANDEY U, MANOLKAR RB, et. al. Development of an electrochemical 90Sr-90Y generator for separation of 90Y suitable for targeted therapy. Nucl. Med. Biol. 2008; 35(2): 245-253.
8. WESTER DW, STEELE RT, RINEHART DE, et. al. Large scale purification of 90Sr from nuclear waste materials for production of 90Y, a therapeutical medical radioisotope. Appl. Radiat. Isot.. 2003; 59(1): 35-41.
9. CHINOL M, HNATOWICH DJ. Generator produced yttrium-90 for radioimmunotherapy. J. Nucl. Med. 1987; 28(9): 1465-1470.
10. KODINA GE. Preparation of high-purity radionuclide 90Y in specially designed centrifugal semicounterflow extractors. Radiochemestry. 2002; 44(1): 62-66.
11. RAMANUJAM A, ACHUTHAN PV, DHAMI PS, et. al. Separation of carrier-free 90Y from high level waste by supported liquid membrane using KSM-17. J Radioanal Nucl Chem. 2001; 247(1): 185-191.
12. SYLVESTER P. Novel ion exchange materials for the separation of 90Y from 90Sr. Patent US 20030231994. 2003.
13. WIKE JS, GUYER CE, RAMEY DW, PHILLIPS BP. Chemistry for Commercial Scale Production of Yttrium-90 for Medical Research. Appl. Radiat. Isot. 1990; 41(9): 861-865.
14. XIQUES A, PÉREZ M, ISAAC K, et. al. Production of large quantities of 90Y by ion-exchange chromatography using an organic resin and a chelating agent. Nucl. Med. Biol. 2010; 37(8): 935-942.
15. XIQUES A, ISAAC K, CASANOVA E, et. al. An adapted purification procedure to improve the quality of 90Y for clinical use. Radiochim. Acta . 2009; 97(12): 739-746.
16. LIU S, EDWARDS DS. Bifunctional chelators for therapeutic lanthanide radiofarmaceuicals. Bioconjug Chem. 2001; 12(1): 7-34.
17. MALJA S, SCHOMACKER K, MALJA E. Preparation of 90Y by the 90Sr-90Y Generator for Medical Purpose. J Radioanal. Nucl. Chem. 2000; 245(2): 403-406.
18. United States National Bureau of Standards. Maximum permissible body burden and maximum permissible concentrations of radionuclides in air and water for occupational exposure: recommendations. Handbook. Volumen 69. 1959. p. 38.
19. PANDEY U, DHAMI PS, JAGESIA P, VENKATESH M, PILLAI MR. Extraction Paper Chromatography Technique for the Radionuclidic Purity Evaluation of 90Y for Clinical Use. Anal. Chem. 2008; 80(3): 801-807.
20. BREEMAN WA, KWEKKEBOOM DJ, DE BLOIS E, et. al. Radiolabelled regulatory peptides for imaging and therapy. Anticancer Agents. Med Chem 2007; 7(3): 345-7.
21. GULEC SA, MESOLORAS G, DEZARN WA, et. al. Safety and efficacy of Y-90 microsphere treatment in patients with primary and metastatic liver cancer: the tumor selectivity of the treatment as a function of tumor to liver flow ratio. J. Trans. l Med. 2007; 5: 15.
22. KWEKKEBOOM DJ, MUELLER-BRAND J, PAGANELLI G, et. al. Overview of results of peptide receptor radionuclide therapy with three radiolabelled somatostatin analogs. J Nucl Med. 2005; 46 (Suppl 1):62S-6S.
2. GOING JE, ROBERTS CA, DANCEY JE, et. al. Treatment of unresectable metastatic coloretal carcinoma to the liver with intrahepatic microspheres: Dose-ranging study. World J Nucl. Med. 2003; 2(3): 216-225.
3. KAMPEN WU, VOTH M, PINKERT J, KRAUSE A. Therapeutic status of radiosynoviorthesis of the knee with yttrium [90Y] colloid in rheumatoid arthritis and related indications. Rheumatology. 2007; 46(1): 16-24.
4. KUTZNER J, DAHNERT W, SCHREYER T, et. al. Treatment of pains from bone metastases with 90Y. Nuklearmedizin. 1981; 20(5): 229-35.
5. MULTIBONE (EDTMP) (Y-IK-26) Summary of Product Characteristics. (Prospecto médico).
6. DAVIES AJ. Radioimmunotherapy for B-cell lymphoma: Y-90 ibritumomab
tiuxetan and I-131 tositumomab. Oncogene, 2007; 26(25): 3614-28.
7. CHAKRAVARTY R, PANDEY U, MANOLKAR RB, et. al. Development of an electrochemical 90Sr-90Y generator for separation of 90Y suitable for targeted therapy. Nucl. Med. Biol. 2008; 35(2): 245-253.
8. WESTER DW, STEELE RT, RINEHART DE, et. al. Large scale purification of 90Sr from nuclear waste materials for production of 90Y, a therapeutical medical radioisotope. Appl. Radiat. Isot.. 2003; 59(1): 35-41.
9. CHINOL M, HNATOWICH DJ. Generator produced yttrium-90 for radioimmunotherapy. J. Nucl. Med. 1987; 28(9): 1465-1470.
10. KODINA GE. Preparation of high-purity radionuclide 90Y in specially designed centrifugal semicounterflow extractors. Radiochemestry. 2002; 44(1): 62-66.
11. RAMANUJAM A, ACHUTHAN PV, DHAMI PS, et. al. Separation of carrier-free 90Y from high level waste by supported liquid membrane using KSM-17. J Radioanal Nucl Chem. 2001; 247(1): 185-191.
12. SYLVESTER P. Novel ion exchange materials for the separation of 90Y from 90Sr. Patent US 20030231994. 2003.
13. WIKE JS, GUYER CE, RAMEY DW, PHILLIPS BP. Chemistry for Commercial Scale Production of Yttrium-90 for Medical Research. Appl. Radiat. Isot. 1990; 41(9): 861-865.
14. XIQUES A, PÉREZ M, ISAAC K, et. al. Production of large quantities of 90Y by ion-exchange chromatography using an organic resin and a chelating agent. Nucl. Med. Biol. 2010; 37(8): 935-942.
15. XIQUES A, ISAAC K, CASANOVA E, et. al. An adapted purification procedure to improve the quality of 90Y for clinical use. Radiochim. Acta . 2009; 97(12): 739-746.
16. LIU S, EDWARDS DS. Bifunctional chelators for therapeutic lanthanide radiofarmaceuicals. Bioconjug Chem. 2001; 12(1): 7-34.
17. MALJA S, SCHOMACKER K, MALJA E. Preparation of 90Y by the 90Sr-90Y Generator for Medical Purpose. J Radioanal. Nucl. Chem. 2000; 245(2): 403-406.
18. United States National Bureau of Standards. Maximum permissible body burden and maximum permissible concentrations of radionuclides in air and water for occupational exposure: recommendations. Handbook. Volumen 69. 1959. p. 38.
19. PANDEY U, DHAMI PS, JAGESIA P, VENKATESH M, PILLAI MR. Extraction Paper Chromatography Technique for the Radionuclidic Purity Evaluation of 90Y for Clinical Use. Anal. Chem. 2008; 80(3): 801-807.
20. BREEMAN WA, KWEKKEBOOM DJ, DE BLOIS E, et. al. Radiolabelled regulatory peptides for imaging and therapy. Anticancer Agents. Med Chem 2007; 7(3): 345-7.
21. GULEC SA, MESOLORAS G, DEZARN WA, et. al. Safety and efficacy of Y-90 microsphere treatment in patients with primary and metastatic liver cancer: the tumor selectivity of the treatment as a function of tumor to liver flow ratio. J. Trans. l Med. 2007; 5: 15.
22. KWEKKEBOOM DJ, MUELLER-BRAND J, PAGANELLI G, et. al. Overview of results of peptide receptor radionuclide therapy with three radiolabelled somatostatin analogs. J Nucl Med. 2005; 46 (Suppl 1):62S-6S.