Progresos en la síntesis de nanoestructuras de carbono por descarga de arco sumergida

Contenido principal del artículo

Luis Felipe Desdín García
Frank Justo Chao Mujica
Lorenzo Hernández Tabares
Liudy García Hernández
Juan Gualberto Darias González
Luis Miguel Ledo Pereda
Ángel Luis Corcho Valdés
Manuel Antuch Cubillas

Resumen

Los nanomateriales de carbono constituyen el área de mayor y más rápido crecimiento de la Nanotecnología. Sus propiedades excepcionales encuentran aplicación en numerosos sectores de la economía. Sin embargo, su producción a gran escala con la calidad adecuada sigue siendo un problema abierto. En el presente trabajo se presentan los avances obtenido en el desarrollo de la tecnología de descarga de arco sumergido para la producción de nanoestructuras de carbono en el Grupo de Nanociencias del CEADEN. Así mismo se reporta la implementación de métodos para para la evaluación de la seguridad en el uso in vitro de nanoestructuras de carbono sintetizadas usando dicho método.

Detalles del artículo

Cómo citar
Desdín García, L. F., Chao Mujica, F. J., Hernández Tabares, L., García Hernández, L., Darias González, J. G., Ledo Pereda, L. M., Corcho Valdés, Ángel L., & Antuch Cubillas, M. (2023). Progresos en la síntesis de nanoestructuras de carbono por descarga de arco sumergida. Nucleus, (73), 25-28. Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/783
Sección
Ciencias Nucleares

Citas

[1] HERNANDEZ TABARES L, DARIAS GONZÁLEZ JG, CHAO MUJICA FJ, DESDÍN GARCIA LF, et. al. Stabilization methods in the submerged arc discharge synthesis of carbon nanostructures. Journal of Nanomaterials. 2021; (9-10): 1-12.
[2] HERNÁNDEZ TABARES L, CARRILLO BARROSO E, DARIAS GONZÁLEZ JG, DESDÍN GARCÍA LF, et. al. Arc current control for a carbon nanoparticle. Revista Cubana de Física. 2011; 28 (1): 1E76-1E79. E/RCF-28-1E.
[3] DARIAS GONZALEZ JG, CARRILLO BARROSO E, HERNÁNDEZ TABARES L., DESDÍN GARCÍA LF, et. al. Sistema de descarga de arco sumergida para la síntesis de nanoonions de carbono multicapas. Revista Cubana de Física. 2011; 28(1): 1E80-1E84.
[4] HERNÁNDEZ TABARES L, DARIAS GONZÁLEZ JG, DESDÍN GARCÍA L.F, et. al. Automated system for the synthesis of nanostructures via arc-discharge in liquids. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2018; 9(3): 035002.
[5] DARIAS GONZÁLEZ JG, HERNÁNDEZ TABARES L, LEDO PEREDA LM, DESDÍN GARCÍA LF, et. al. Note: Limitations of the optoelectronic control for carbon nanoparticles synthesis via arc-discharge in solution. Review of Scientific Instruments. 2014; 85(3): 036107-036107-3.
[6] CHAO MUJICA FJ, GARCIA HERNÁNDEZ L, DARIAS GONZÁLEZ JG, DESDÍN GARCÍA LF, et. al. Carbon quantum dots by submerged arc discharge in water: synthesis, characterization, and mechanism of formation. Journal of Applied Physics. 2021; 129(16): 163301.
[7] CHAO MUJICA FJ, DARIAS GONZÁLEZ JG, GARCÍA HERNÁNDEZ L, DESDÍN GARCÍA LF, et. al. Arc discharge carbon nanoonions purification by liquid-liquid extraction. Anales de la Academia de Ciencias de Cuba. 2019; 9(2): 1-10.
[8] GARCÍA HERNÁNDEZ L, CHAO MUJICA FJ, MUSACCHIO JA, DESDIN GARCÍA LF, et. al. Proteomic analysis in cells treated with pristine carbon nano-onions and its subcellular localization. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2019; 10 (3): 035011.
[9] SOGUERO GONZÁLEZ D, CASTILLO ÁLVAREZ J, DESDÍN GARCÍA LF. Sistema de seguridad para elaborar nanopartículas de carbono a escala de laboratorio. Revista de Salud Ambiental. 2012; 12 (1): 46-51.
[10] DESDÍN GARCÍA LF, GARCÍA HERNÁNDEZ L, DÍAZ CURBELO A, DARIAS GONZALEZ JG, et. al. Nanoseguridad. La Habana: Editorial Científico-Técnica, 2014. ISBN 978-959-05-0711-3.
[11] DARIAS GONZÁLEZ JG, HERNÁNDEZ TABARES L, CODORNIU PUJALS D, DESDÍN GARCIA L, et. al. Carbon nanostructures obtained by underwater arc discharge of graphite electrodes: synthesis and characterization. Proceedings of the XV Workshop on Nuclear Physics and IX International Symposium on Nuclear and Related Techniques WONP-NURT’2015. CEADEN. February 9-13, 2015. Havana, Cuba. ISBN 978-959-300-069-7. ArXiv preprint, arXiv: 1502.04062 Cornell University.
[12] CODORNIU PUJALS D, RODRÍGUEZ GARCÉS D, ARIAS DE FUENTES O, DESDÍN GARCÍA LF. XPS of carbon nanostructures obtained by underwater arc discharge of graphite electrodes. Nucleus. 2018; (64): 15-18.
[13] CODORNIU PUJALS D, ARIAS DE FUENTES O, DESDIN GARCÍA LF, CAZZANELLI E, CAPUTI LS. Raman spectroscopy of polyhedral carbon nano-onions. Applied Physics A. 2015; 120: 1339-1345.
[14] BARRIOS COSSIO JJ, ACEVEDO PEÑA P, HERNÁNDEZ GORDILLO A, et. al. In Situ Aniline-Polymerized Interfaces on GO−PVA Nanoplatforms as Bifunctional Supercapacitors and pH-Universal ORR Electrodes. ACS Appl. Energy Mater. 2020; 3(5): 4727−4737.
[15] CORCHO VALDÉS AL, CALZADILLA MAYA J, DESDÍN GARCÍA LF, ANTUCH CUBILLAS M. Carbon nanotubes in organic catalysis. In: Carbon composite catalysts. Preparation, structural and morphological property and applications. Springer Singapore, 2022. p. 223-266.
[16] DESDÍN GARCÍA LF, CHAO MUJICA FJ, DARIAS GONZÁLEZ JG, HERNÁNDEZ TABARES L, et. al. Método de producción de puntos cuánticos de carbono y óxido de grafeno por descarga de arco sumergida. Certificado No. 24548. Oficina Cubana de la Propiedad Industrial. Boletín Oficial. 2021; (396): 5. Resolución 1831/2021.
[17] HERNÁNDEZ TABARES L, CHAO MUJICA FJ, DARIAS GONZÁLEZ J. G., DESDÍN GARCÍA LF, et. al. Multiparametric diagnostic in the synthesis of carbon nanostructures via submerged arc discharge: Stability, nucleation and yield. Journal of Applied Physics. 2019; 126(18): 183301.
[18] PÉREZ GUEVARA OL, DESDÍN GARCÍA LF, GARCÍA HERNÁNDEZ L. Una aproximación a los aspectos regulatorios en las nanotecnologías. Anuario Científico CECMED. 2021; 19: 101-114.
[19] GARCÍA HERNÁNDEZ L, SALMEN ESPINDOLA F, DESDIN GARCÍA LF. “Omics” studies on carbon nanoparticles effects. Biosci. J. 2015; 31(4): 1260-1269.
[20] LÓPEZ YC, CHAO MUJICA FJ, DESDÍN GARCÍA LF, GARCÍA HERNÁNDEZ L, et. al. Neutral red dye adsorption on carbon nanoonions: viability assay interference and adduct characterisation Adv. Nat. Sci.: Nanosci. Nanotechnol. 2022; 13(4): 045001.