Preparación de apósitos de membranas de hidrogeles a escala de laboratorio mediante haz de electrones y radiación gamma

Contenido principal del artículo

Manuel Rapado Raneque
Alejandro Rodríguez Rodríguez
Carlos Peniche Covas

Resumen

En el presente trabajo se describe la preparación de hidrogeles basados en redes entrecruzadas de poli (N-vinilpirrolidona), PVP con polietilenglicol, agar y un 90% de agua, y nanocomposites de PVP con una nanoarcilla sintética, la Laponita XLG para su empleo como apósito para quemaduras. Estos sistemas se obtuvieron por dos vías: radiación gamma de Co-60 y haz de electrones. La dosis de gelificación obtenida fue de = 1.72 kGy. El módulo elástico de los hidrogeles resultó independiente del método de irradiación, siendo igual a 0.39 MPa para el irradiado con Co-60 y 0.38 MPa para el irradiado con haz de electrones. El módulo elástico de la membrana de nanocomposite fue 3 veces superior, 1.25 MPa. Estos resultados muestran que los hidrogeles de nanocomposites de PVP/Laponita XLG resultan superiores para su aplicación en el tratamiento de quemaduras, por su alta capacidad de sorción de agua y sus mejores propiedades mecánicas.

Detalles del artículo

Cómo citar
Rapado Raneque, M., Rodríguez Rodríguez, A., & Peniche Covas, C. (1). Preparación de apósitos de membranas de hidrogeles a escala de laboratorio mediante haz de electrones y radiación gamma. Nucleus, (53). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/582
Sección
Ciencias Nucleares

Citas

1. BELL CL, PEPPAS NA. Biomedical membranes from hydrogels and interpolymer complexes. Adv Polym Sci. 1995; 122: 125-175.
2. ROSIAK JM, YOSHII F. Hydrogels and their medical applications. Nucl. Inst. Meth Phys Res B. 1999; 151(1-4): 56-64.
3. BENAMER S, MAHLOUS M, BOUKRIF A, et. al. Synthesis and characterization of hydrogels based on poly(vinyl pyrrolidone. Nucl. Inst. Meth. B. 2006; 248(2): 284-290.
4. LUGÃO AB, MALMONGE SM. Use of radiation in production of hydrogels. Nucl. Inst. Meth. B. 2001; 185(1-4): 37-42.
5. KIM SJ, HAHN SK, KIM MJ, et. al. Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J Controlled Release. 2005; 104(2): 323-335.
6. LLOYD LL, KENNEDY JF, METHACANON P, et. al. Carbohydrate polymers as wound management aids. Carbohydrate Polymers. 1998; 37(3): 315-322.
7. ROSIAK JM, ULANSKI P, RZEINICKI A. Hydrogels for biomedical purposes. Nucl Inst Meth Phys Res B. 1995; 105(1): 335-339.
8. WALKER M, et. al. Scanning electron microscopic examination of bacterial immobilisation in a carboxymethyl cellulose (AQUACEL) and alginate dressings. Biomaterials. 2003; 24(5): 883-890.
9. RAZZAK MT, et. al. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiation Physics and Chemistry. 2001; 62(9): 107-113.
10. LUGÃO AB, ROGERO SO, MALMONGE SM. Rheological behaviour of irradiated wound dressing poly(vinyl pyrrolidone) hydrogels. Radiat. Phys. Chem. 2002; 63(3-6): 543-546.
11. ROSIAK JM, RUCINSKA-RYBUS A, PEKALA W. Method of manufacturing of hydrogel dressings. Patent US 4871490. 1989.
12. ABAD LV, et. al. Properties of radiation synthesized PVP-kappa carrageenan hydrogel blends.Radiat Phys Chem. 2003; 68(5): 901-908.
13. AJJI Z, OTHMAN I, ROSIAK JM. Production of hydrogel wound dressings using gamma radiation. Nucl Inst Meth Phys Res B. 2005; 229(3-4): 375-380.
14. SEN M, AVCI EN. Radiation synthesis of poly(N-vinyl-2-pyrrolidone)-?-carrageenan hydrogels and their use in wound dressing applications. I. Preliminary laboratory tests. J Biomed Mater Res. 2005; 74A(2): 187-196.
15. ZHU L, WOOL RP. Nanoclay reinforced bio-based elastomers: Synthesis and characterization. Polymer. 2006; 47(24): 8106-8115.
16. BLANTON TN, MAJUMDAR D, MELPOLDER SM. Microstructure of clay-polymer composites. Advances in X-ray Analysis. 2000; 42: 562-568.
17. LAN T, KAVIRATNA PD, PINNAVAIA TJ. On the nature of polyimide-clay hybrid composites. Chem. Mater. 1994; 6: 573-575.
18. RAY SS, OKAMOTO M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 2003; 28(11): 1539-1641.
19. HARAGUCHI K, TANIGUCHI S, TAKEHISA T. Reversible force generation in a temperature-responsive nanocomposite hydrogel consisting of poly(N-isopropylacrylamide) and clay. ChemPhysChem. 2005; 6(2): 238-241.
20. THOMAS PC, CIPRIANO BH, RAGHAVAN SR. Nanoparticle-cross-linked hydrogels as a class of efficient materials for separation and ion exchange. SoftMatter. 2011; 7: 8192-8197.
21. KOKABI M, SIROUSAZAR M, HASSAN ZM. PVA-clay nanocomposite hydrogels for wound dressing. European Polymer Journal. 2007; 43(3): 773-781.
22. MITTENDORFER J, GRATZ F. A Status report from an advanced electron beam service center in Austria. In: Emerging applications of radiation processing. IAEA-TECDOC 1386. Proceedings of a technical meeting held in Vienna, 28-30 April 2003. IAEA: Vienna, 2004. p. 21-26.
23. ROSIAK JM. Hidrogel dresings. In: Radiation Effects on Polymers. Washington DC: American Chemical Society, 1991. p. 271-299.
24. ROSIAK JM. Gel/sol analysis of irradiated polymers. Radiat Phys Chem. 1998; 51(1): 13-17.
25. ZIMEK Z. Accelerator technology for radiation processing. Recent development. In: Emerging applications of radiation processing. IAEA-TECDOC 1386. Proceedings of a technical meeting held in Vienna, 28–30 April 2003. IAEA: Vienna, 2004. p. 55-64.
26. POZZO DC, WALKER LM. Reversible shear gelation of polymer–clay dispersions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2004; 240(1-3): 187-198.
27. JANIK I, ROSIAK JM. Sol/Gel program [software en línea] [consulta: 12-02-2012].
28. BENAMER S, et. al. Synthesis and characterisation of hydrogels based on poly(vinyl pyrrolidone). Nucl Inst Meth Phys Res B. 2006; 248(2): 284-290.
29. TAKIGAWA T, et. al. Change in Young’s modulus of poly(N-isopropylacrylamide) gels by volume phase transition. Polym Gels Networks. 1997; 5(6): 585-589.
30. ROSIAK J, OLEJNIACZAK J, CHARLESBY A. Determination of de radiation yield of hydrogels crossliking. Radiat. Phys. Chem. 1998; 32(5): 691-694.