Hydrogel wound dressing preparation at the laboratory scale by using electron beam and gamma radiation
Main Article Content
Abstract
The present work describes the preparation of hydrogel based on cross-linked networks of poly (N-vinylpirrolidone), PVP, with polyethyleneglicol and agar with 90% water and PVP nancomposites with a synthetic nanoclay, Laponite XLG, for use as burn dressings. These systems were obtained in two ways: using gamma Co-60 and electron beam radiation. The gelation obtained dose was = 1.72 kGy. The elastic modulus of hydrogel was independent of the method of irradiation. It was 0.39 MPa for the hydrogel irradiated with gamma Co-60 and 0.38 MPa for electron beam irradiation. The elastic modulus of the nanocomposite membrane was 1.25 MPa, three times higher. These results indicate that the PVP/Laponite XLG nanocomposite hydrogel membrane is the best choice for wound dressing applications due to its high water sorption capacity and its superior mechanical properties.
Article Details
How to Cite
Rapado Raneque, M., Rodríguez Rodríguez, A., & Peniche Covas, C. (1). Hydrogel wound dressing preparation at the laboratory scale by using electron beam and gamma radiation. Nucleus, (53). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/582
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
1. BELL CL, PEPPAS NA. Biomedical membranes from hydrogels and interpolymer complexes. Adv Polym Sci. 1995; 122: 125-175.
2. ROSIAK JM, YOSHII F. Hydrogels and their medical applications. Nucl. Inst. Meth Phys Res B. 1999; 151(1-4): 56-64.
3. BENAMER S, MAHLOUS M, BOUKRIF A, et. al. Synthesis and characterization of hydrogels based on poly(vinyl pyrrolidone. Nucl. Inst. Meth. B. 2006; 248(2): 284-290.
4. LUGÃO AB, MALMONGE SM. Use of radiation in production of hydrogels. Nucl. Inst. Meth. B. 2001; 185(1-4): 37-42.
5. KIM SJ, HAHN SK, KIM MJ, et. al. Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J Controlled Release. 2005; 104(2): 323-335.
6. LLOYD LL, KENNEDY JF, METHACANON P, et. al. Carbohydrate polymers as wound management aids. Carbohydrate Polymers. 1998; 37(3): 315-322.
7. ROSIAK JM, ULANSKI P, RZEINICKI A. Hydrogels for biomedical purposes. Nucl Inst Meth Phys Res B. 1995; 105(1): 335-339.
8. WALKER M, et. al. Scanning electron microscopic examination of bacterial immobilisation in a carboxymethyl cellulose (AQUACEL) and alginate dressings. Biomaterials. 2003; 24(5): 883-890.
9. RAZZAK MT, et. al. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiation Physics and Chemistry. 2001; 62(9): 107-113.
10. LUGÃO AB, ROGERO SO, MALMONGE SM. Rheological behaviour of irradiated wound dressing poly(vinyl pyrrolidone) hydrogels. Radiat. Phys. Chem. 2002; 63(3-6): 543-546.
11. ROSIAK JM, RUCINSKA-RYBUS A, PEKALA W. Method of manufacturing of hydrogel dressings. Patent US 4871490. 1989.
12. ABAD LV, et. al. Properties of radiation synthesized PVP-kappa carrageenan hydrogel blends.Radiat Phys Chem. 2003; 68(5): 901-908.
13. AJJI Z, OTHMAN I, ROSIAK JM. Production of hydrogel wound dressings using gamma radiation. Nucl Inst Meth Phys Res B. 2005; 229(3-4): 375-380.
14. SEN M, AVCI EN. Radiation synthesis of poly(N-vinyl-2-pyrrolidone)-?-carrageenan hydrogels and their use in wound dressing applications. I. Preliminary laboratory tests. J Biomed Mater Res. 2005; 74A(2): 187-196.
15. ZHU L, WOOL RP. Nanoclay reinforced bio-based elastomers: Synthesis and characterization. Polymer. 2006; 47(24): 8106-8115.
16. BLANTON TN, MAJUMDAR D, MELPOLDER SM. Microstructure of clay-polymer composites. Advances in X-ray Analysis. 2000; 42: 562-568.
17. LAN T, KAVIRATNA PD, PINNAVAIA TJ. On the nature of polyimide-clay hybrid composites. Chem. Mater. 1994; 6: 573-575.
18. RAY SS, OKAMOTO M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 2003; 28(11): 1539-1641.
19. HARAGUCHI K, TANIGUCHI S, TAKEHISA T. Reversible force generation in a temperature-responsive nanocomposite hydrogel consisting of poly(N-isopropylacrylamide) and clay. ChemPhysChem. 2005; 6(2): 238-241.
20. THOMAS PC, CIPRIANO BH, RAGHAVAN SR. Nanoparticle-cross-linked hydrogels as a class of efficient materials for separation and ion exchange. SoftMatter. 2011; 7: 8192-8197.
21. KOKABI M, SIROUSAZAR M, HASSAN ZM. PVA-clay nanocomposite hydrogels for wound dressing. European Polymer Journal. 2007; 43(3): 773-781.
22. MITTENDORFER J, GRATZ F. A Status report from an advanced electron beam service center in Austria. In: Emerging applications of radiation processing. IAEA-TECDOC 1386. Proceedings of a technical meeting held in Vienna, 28-30 April 2003. IAEA: Vienna, 2004. p. 21-26.
23. ROSIAK JM. Hidrogel dresings. In: Radiation Effects on Polymers. Washington DC: American Chemical Society, 1991. p. 271-299.
24. ROSIAK JM. Gel/sol analysis of irradiated polymers. Radiat Phys Chem. 1998; 51(1): 13-17.
25. ZIMEK Z. Accelerator technology for radiation processing. Recent development. In: Emerging applications of radiation processing. IAEA-TECDOC 1386. Proceedings of a technical meeting held in Vienna, 28–30 April 2003. IAEA: Vienna, 2004. p. 55-64.
26. POZZO DC, WALKER LM. Reversible shear gelation of polymer–clay dispersions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2004; 240(1-3): 187-198.
27. JANIK I, ROSIAK JM. Sol/Gel program [software en línea] [consulta: 12-02-2012].
28. BENAMER S, et. al. Synthesis and characterisation of hydrogels based on poly(vinyl pyrrolidone). Nucl Inst Meth Phys Res B. 2006; 248(2): 284-290.
29. TAKIGAWA T, et. al. Change in Young’s modulus of poly(N-isopropylacrylamide) gels by volume phase transition. Polym Gels Networks. 1997; 5(6): 585-589.
30. ROSIAK J, OLEJNIACZAK J, CHARLESBY A. Determination of de radiation yield of hydrogels crossliking. Radiat. Phys. Chem. 1998; 32(5): 691-694.
2. ROSIAK JM, YOSHII F. Hydrogels and their medical applications. Nucl. Inst. Meth Phys Res B. 1999; 151(1-4): 56-64.
3. BENAMER S, MAHLOUS M, BOUKRIF A, et. al. Synthesis and characterization of hydrogels based on poly(vinyl pyrrolidone. Nucl. Inst. Meth. B. 2006; 248(2): 284-290.
4. LUGÃO AB, MALMONGE SM. Use of radiation in production of hydrogels. Nucl. Inst. Meth. B. 2001; 185(1-4): 37-42.
5. KIM SJ, HAHN SK, KIM MJ, et. al. Development of a novel sustained release formulation of recombinant human growth hormone using sodium hyaluronate microparticles. J Controlled Release. 2005; 104(2): 323-335.
6. LLOYD LL, KENNEDY JF, METHACANON P, et. al. Carbohydrate polymers as wound management aids. Carbohydrate Polymers. 1998; 37(3): 315-322.
7. ROSIAK JM, ULANSKI P, RZEINICKI A. Hydrogels for biomedical purposes. Nucl Inst Meth Phys Res B. 1995; 105(1): 335-339.
8. WALKER M, et. al. Scanning electron microscopic examination of bacterial immobilisation in a carboxymethyl cellulose (AQUACEL) and alginate dressings. Biomaterials. 2003; 24(5): 883-890.
9. RAZZAK MT, et. al. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiation Physics and Chemistry. 2001; 62(9): 107-113.
10. LUGÃO AB, ROGERO SO, MALMONGE SM. Rheological behaviour of irradiated wound dressing poly(vinyl pyrrolidone) hydrogels. Radiat. Phys. Chem. 2002; 63(3-6): 543-546.
11. ROSIAK JM, RUCINSKA-RYBUS A, PEKALA W. Method of manufacturing of hydrogel dressings. Patent US 4871490. 1989.
12. ABAD LV, et. al. Properties of radiation synthesized PVP-kappa carrageenan hydrogel blends.Radiat Phys Chem. 2003; 68(5): 901-908.
13. AJJI Z, OTHMAN I, ROSIAK JM. Production of hydrogel wound dressings using gamma radiation. Nucl Inst Meth Phys Res B. 2005; 229(3-4): 375-380.
14. SEN M, AVCI EN. Radiation synthesis of poly(N-vinyl-2-pyrrolidone)-?-carrageenan hydrogels and their use in wound dressing applications. I. Preliminary laboratory tests. J Biomed Mater Res. 2005; 74A(2): 187-196.
15. ZHU L, WOOL RP. Nanoclay reinforced bio-based elastomers: Synthesis and characterization. Polymer. 2006; 47(24): 8106-8115.
16. BLANTON TN, MAJUMDAR D, MELPOLDER SM. Microstructure of clay-polymer composites. Advances in X-ray Analysis. 2000; 42: 562-568.
17. LAN T, KAVIRATNA PD, PINNAVAIA TJ. On the nature of polyimide-clay hybrid composites. Chem. Mater. 1994; 6: 573-575.
18. RAY SS, OKAMOTO M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 2003; 28(11): 1539-1641.
19. HARAGUCHI K, TANIGUCHI S, TAKEHISA T. Reversible force generation in a temperature-responsive nanocomposite hydrogel consisting of poly(N-isopropylacrylamide) and clay. ChemPhysChem. 2005; 6(2): 238-241.
20. THOMAS PC, CIPRIANO BH, RAGHAVAN SR. Nanoparticle-cross-linked hydrogels as a class of efficient materials for separation and ion exchange. SoftMatter. 2011; 7: 8192-8197.
21. KOKABI M, SIROUSAZAR M, HASSAN ZM. PVA-clay nanocomposite hydrogels for wound dressing. European Polymer Journal. 2007; 43(3): 773-781.
22. MITTENDORFER J, GRATZ F. A Status report from an advanced electron beam service center in Austria. In: Emerging applications of radiation processing. IAEA-TECDOC 1386. Proceedings of a technical meeting held in Vienna, 28-30 April 2003. IAEA: Vienna, 2004. p. 21-26.
23. ROSIAK JM. Hidrogel dresings. In: Radiation Effects on Polymers. Washington DC: American Chemical Society, 1991. p. 271-299.
24. ROSIAK JM. Gel/sol analysis of irradiated polymers. Radiat Phys Chem. 1998; 51(1): 13-17.
25. ZIMEK Z. Accelerator technology for radiation processing. Recent development. In: Emerging applications of radiation processing. IAEA-TECDOC 1386. Proceedings of a technical meeting held in Vienna, 28–30 April 2003. IAEA: Vienna, 2004. p. 55-64.
26. POZZO DC, WALKER LM. Reversible shear gelation of polymer–clay dispersions. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2004; 240(1-3): 187-198.
27. JANIK I, ROSIAK JM. Sol/Gel program [software en línea]
28. BENAMER S, et. al. Synthesis and characterisation of hydrogels based on poly(vinyl pyrrolidone). Nucl Inst Meth Phys Res B. 2006; 248(2): 284-290.
29. TAKIGAWA T, et. al. Change in Young’s modulus of poly(N-isopropylacrylamide) gels by volume phase transition. Polym Gels Networks. 1997; 5(6): 585-589.
30. ROSIAK J, OLEJNIACZAK J, CHARLESBY A. Determination of de radiation yield of hydrogels crossliking. Radiat. Phys. Chem. 1998; 32(5): 691-694.