Probabilistic analysis of radiological risks in the hybrid SPECT/PET /CT facility in Cuba

Main Article Content

Zayda Amador Balbona
Leonel Torres Aroche
Antonio Torres Valle

Abstract

This research shows the results of the probabilistic analysis of radiological risks with the risk matrix method of the hybrid installation for diagnosis in nuclear medicine, recently installed in Havana, of the Isotope Center. The stages of the process were defined from its design and construction to the management of radioactive waste. To define the initiating events, we started from the previous experience in Cuba and the review of the incidents in patients, workers and the public, published. The model that was developed includes 14 stages, 109 initiating events, 105 barriers, 48 frequency reducers and 13 consequence reducers. The risk of accidental sequences with low frequency and high consequences for patients was required to be eliminated. An acceptable level of risk was obtained and the corresponding measures were included in the Safety and Quality Improvement Plan, along with those of the sensitivity analysis. Among the most contributing measures are the organization of the service that establishes on alternate days the performance of SPECT/CT and PET/CT studies, use of a reserve dose calibrator when in doubt of possible deviation from the one used regularly, the use of automatic dispensers, moderate workload, training of the medical physicist who will supervise and/or execute the instrumentation quality assurance program, and analysis of lessons learned from radiological incidents. They highlight the uniqueness of the studio, as it is the first Cuban facility with the three technologies and the potential of its benefits.

Article Details

How to Cite
Amador Balbona, Z., Torres Aroche, L., & Torres Valle, A. (2021). Probabilistic analysis of radiological risks in the hybrid SPECT/PET /CT facility in Cuba. Nucleus, (68). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/712
Section
Ciencias Nucleares

References

[1]. PERERA PINTADO A, TORRES AROCHE LA, VERGARA GIL A, BATISTA CUÉLLAR JF., PRATS CAPOTE A. SPECT/CT: principales aplicaciones en la medicina nuclear. Nucleus. 2017; 62(2-9). [citado 10/06/2021]. Disponible en: http://scielo.sld.cu/pdf/nuc/n62/nuc026217.pdf.
[2]. RODRÍGUEZ-FRAILE M, EZPONDA A, GRISANTI F, MORÁN V, CALVO M, BERIÁN P. The joint use of 99mTc-MAA-SPECT/CT and cone-beam CT optimizes radioembolization planning. EJNMMI Res. 2021; 11(23):2-11. doi: https://doi.org/10.1016/S0716-8640(13)70132-9.
[3]. TREGLIA G, GIOVANELLA L. Evidence-based positron emission tomography. Evidence-based positron emission tomography. Gewerbestrasse, Switzerland: Springer Nature [Internet], Switzerland AG; 2020. [citado 10/06/2021]. Disponible en: https://doi.org/10.1007/978-3-030-47701-1.
[4]. ISRAEL O, PELLET O, BIASSONI L, DE PALMA D, et. al. Two decades of SPECT/CT – the coming of age of a technology: an updated review of literature evidence. Eur J Nucl Med Mol Imag. 2019; 46: 1990-2012. doi: https://doi.org/10.1007/s00259-019-04404-6.
[5]. Ministerio de Ciencia, Tecnología y Medio Ambiente (CITMA). Reglamento sobre notificación y autorización de prácticas y actividades asociadas al empleo de fuentes de radiaciones ionizantes. La Habana: CITMA, 2012.
[6]. OLSON B. Medical Event (Incorrect Dose Location). US Nuclear Regulatory Commission. Event number: 55145, 2021. [citado 30/03/2021]. Disponible en: https://www.nrc.gov/reading-rm/doc-collections/event-status/event/2021/20210329en.html#en55145
[7]. LATTANZE R, KNOWLAND J, BRYANT T, BARVI I, KISER J. Effects of diagnostic radiopharmaceutical extravasations on patients. J Nucl Med. 2020; 61(supplent 1): 1018.
[8]. SENISON MG. Loss of Control of A Cs-137 Source. US Nuclear Regulatory Commission. Event number: 54583, 2020. [citado 21/03/2020]. Disponible en: https://www.nrc.gov/reading-rm/doc-collections/event-status/event/2020/20200319en.html#en54583
[9]. KASSEL K. Unplanned contamination on PET CT scanner mobile unit. US Nuclear Regulatory Commission. Event number: 54461, 2020. [citado 15/01/2020]. Disponible en: https://www.nrc.gov/reading-rm/doc-collections/event-status/event/2020/20200110en.html#en54461
[10]. LATTANZE R. Extravasations of diagnostic radiopharmaceuticals and medical event reporting. lucerno dynamics NRC Dossier. 2019.
[11]. MARTIN CJ, MARENGO M, VASSILEVA J, GIAMMARILE F, POLI GL, MARSK P. Guidance on prevention of unintended and accidental radiation exposures in nuclear medicine. J Radiol Prot. 2019; 39(3): 665-95. doi: 10.1088/1361-6498/ab19d8.
[12]. FRANCIS J. Hand contamination and overexposure of workers at a nuclear medical facility. Office for Nuclear Regulation. UK; 2019.
[13]. WILBERS A. Eluate exceeded breakthrough limits on rubidium - 82 Generator. US Nuclear Regulatory Commission. Event number: 53972, 2019. . [citado 15/04/2019]. Disponible en: https://www.nrc.gov/reading-rm/doc-collections/event-status/event/2019/20190411en.html#en53972
[14]. TOWNSEND D, BENEFIELD T, PERRIN S, RYAN K, LATTANZE R, WONG T. Multi-center assessment of infiltration rates in fdg-pet/ct scans: detection, incidence, and contributing factors. Nuclear Med. 2018; 59 (supplement 1): 520.
[15]. VAN DER POL J, VÖÖ S, BUCERIUS J, MOTTAGHY FM. Consequences of radiopharmaceutical extravasation and therapeutic interventions: a systematic review. Eur J Nucl Med Mol Imaging. 2017; 44: 1234-43. doi: 10.1007/s00259-017-3675-7.
[16]. AUSTRALIAN RADIATION PROTECTION AND NUCLEAR SAFETY AGENCY. Radiation incident register (ARIR). Summary of radiation incidents: 1 january To 31 december 2013, 2014. [citado 15/04/2018]. Disponible en: http://www.arpansa.gov.au/radiationprotection/arir/.
[17]. AUSTRALIAN RADIATION PROTECTION AND NUCLEAR SAFETY AGENCY. Australian radiation incident register (ARIR). Summary of radiation incidents: 1 january to 31 december 2011. 2012 [citado 15/04/2018]. Disponible en: http://www.arpansa.gov.au/radiationprotection/arir/.
[18]. WAGNER T, BRUCHER N, JULIAN A, HITZEL A. A false-positive finding in therapeutic evaluation: hypermetabolic axillary lymph node in a lymphoma patient following FDG extravasation. Nuclear Med Rev. 2011; 14(2): 109-111. doi: 10.5603/NMR.2011.00025.
[19]. OSMAN MM, MUZAFFAR R, ALTINYAY ME, TEYMOURI C. FDG dose extravasations inPET/CT: frequency and impact on SUV measurements. Frontiers in Oncology. 2011; 1(41): 1-6. doi: 10.3389/fonc.2011.00041.
[20]. AUSTRALIAN RADIATION PROTECTION AND NUCLEAR SAFETY AGENCY. Australian radiation incident register (ARIR). Summary of radiation incidents: 1 january To 31 december 2010, 2011. [citado 15/04/2018]. Disponible en: http://www.arpansa.gov.au/radiationprotection/arir/.
[21]. VANO-GALVAN S, RODRIGUEZ-REY C, VANO-GALVAN E, JAÉN P. Technetium and blood extravasation before gammagraphy: a case report. Cases Journal. 2009; 2 (141): 1-2. [citado 10/06/2021] Disponible en: http://www.casesjournal.com/content/2/1/141.
[22]. Organismo Internacional de Energía Atómica y Foro Iberoamericano de Organismos Reguladores en Seguridad Nuclear, Radiológica y Física. Aplicación de la matriz de riesgo a la radioterapia. IAEA-TECDOC 1685/S. Viena, 2012.
[23]. ARCINIEGAS-ALVAREZ MA, HERRERA DC, ESTRADA-MOLINA A. Análisis de riesgo de instalaciones de radioterapia y medicina nuclear en Colombia con el método de matriz de riesgo. XI Congreso Regional de Seguridad Radiológica y Nuclear Congreso Regional IRPA “Cultura de Seguridad: un compromiso compartido”; 16 al 20 de abril de 2018 [citado 10/06/2021], La Habana, Cuba. Disponible en: https://www.researchgate.net/publication/326191284.
[24]. CALDERÓN MARÍN CF, GONZÁLEZ GONZÁLEZ JJ, DUMÉNIGO C, QUESADA CEPERO W, ET AL. Análisis de seguridad radiológica de una instalación PET/CT mediante el empleo de la matriz de riesgo. Nucleus. 2017; (62): 38-42.
[25]. LÓPEZ MORONES R, DUMÉNIGO GONZÁLEZ C, ESPINOSA MA, CRUZ R, PAPADOPULOS S, JOANA G. Overview of risk models and results obtained by Foro PROJECT (SEVRRA 2) for IMRT and DNM Techniques. In: IAEA (Virtual event) International Conference on Radiation Safety: Improving Radiation Protection in Practice; (09-20)/11/2020; Vienna: IAEA; 2020.
[26]. DUMÉNIGO C, LÓPEZ MORONES R, RAMÍREZ ML, PAPADÓPULOS S, et. al. Metodología de matrices de riesgo. Actualización de la misma basada en las experiencias en su aplicación. XI Congreso Regional de Seguridad Radiológica y Nuclear Congreso Regional IRPA “Cultura de Seguridad: un compromiso compartido”; 16 al 20 de abril de 2018; La Habana, Cuba.
[27]. DUMÉNIGO C, BOSCH R, DE LA FUENTE PUCH A, PÉREZ Y, QUEVEDO J. Estimaciones de riesgo con el uso de SEVRRA. Análisis de resultados. La Perspectiva del usuario y del regulador. XI Congreso Regional de Seguridad Radiológica y Nuclear Congreso Regional IRPA “Cultura de Seguridad: un compromiso compartido”; 16 al 20 de abril de 2018. La Habana, Cuba.
[28]. TORRES VALLE A. Manual de usuario SECURE-MR-FMEA 3.0. Programa de análisis de riesgo basado en matriz de riesgo y FMEA. La Habana, Cuba; 2017.
[29]. Centro Nacional de Seguridad Nuclear. Guía expectativas del organismo regulador sobre la cultura de seguridad en las organizaciones que realizan actividades con fuentes de radiación ionizante. La Habana, 2015.
[30]. International Atomic Energy Agency. Radiation safety culture trait talks. Handbook. Vienna, 2021. [citado 03/01/2021]. Disponible en: https://www.iaea.org/sites/default/files/21/01/radiation-safety-culture-trait-talks.pdf.
[31]. DUMÉNIGO C, GUERRERO M, CRUZ Y, SOLER K. Evaluaciones de seguridad de la práctica de medicina nuclear utilizando el método de matrices de riesgo. IX Latin American IRPA Regional Congress on Radiation Protection and Safety - IRPA 2013; April 15-19, 2013; Rio de Janeiro, Brazil 2013. [citado 03/01/2021] Disponible en: http://www.sbpr.org.br/irpa13/AnaisdoiRPA2013/.
[32]. DUMÉNIGO C, GUERRERO M, LÓPEZ R, PAZ A. Matrices de riesgo en medicina nuclear. Modelación en SEVRRA. X Congreso Regional Latinoamericano IRPA de Protección y Seguridad Radiológica “Radioprotección: Nuevos Desafíos para un Mundo en Evolución”. 12 al 17 de abril, 2015. Buenos Aires, Argentina 2015. [citado 03/01/2021] Disponible en: http://www.irpabuenosaires2015.org/Archivos/tr-completos/.
[33]. VANO E, JIMÉNEZ P, RAMÍREZ R, ZARZUELA J, ET AL. Main problems and suggested solutions for improving radiation protection in medicine in Ibero-American countries. Summary of an International Conference held in Madrid, 2016. J Radiol Prot. 2018; 38: 109-20. doi: https://doi.org/10.1088/1361-6498/aa914a.
[34]. International Atomic Energy Agency. Nuclear medicine resources manual. 2020 edition. IAEA Human Health Series. Marketing and sales unit. Publishing Section. 37: 175. Vienna: IAEA, 2020 [citado 03/01/2021]. Disponible en: https://www-pub.iaea.org/MTCD/Publications/PDF/PUB/1861.pdf.

Most read articles by the same author(s)