Radiological impact assessment on patients and workers at Elguea spa

Main Article Content

Juan Tomás Zerquera
Isis María Fernández Gómez
Jorge Carrazana González
Eduardo Capote Ferrera

Abstract

The use of hot spring waters from deep geologic layers in spas has been identifi ed as typical scenarios of exposure to natural radiation. These scenarios can affect the patients under treatment, as well as the workers of these facilities. Therefore, characterization studies are being undertaken in these spas in order to evaluate the radiological impact they produce on these categories of population. The Elguea Spa, located on the northern coast of Villa Clara, Cuba, is equipped to provide services by using hot spring waters and mud existing in the zone of the spa. Its waters contain significant levels of radon. Present paper shows the dose estimates made from the radiological characterization of the spa and its surroundings, both for workers and the patients receiving treatment. The dose values are in the range of 1,01 to 180 ?Sv/year for workers, the most irradiated group, and these results suggest that there is no need for special protection measures or regulations.

Article Details

How to Cite
Zerquera, J. T., Fernández Gómez, I. M., Carrazana González, J., & Capote Ferrera, E. (1). Radiological impact assessment on patients and workers at Elguea spa. Nucleus, (49). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/544
Section
Ciencias Nucleares

References

1. EUROPEAN COMMISSION. Radiation Protection 88. Recommendations for the implementation of title VII of the European Basic Safety Standards Directive concerning significant increased in exposure due to natural radiation sources. European Commission, 1997.
2. PALOMARES LÓPEZ J, POZUELO CUERVO M. Análisis de la Radiactividad en aguas de los Balnearios de Alhama de Granada. Anal. Real Acad. Nac. Farm. 2002; 68: 373- 380.
3. DORETTI L, et. al. Natural Radionuclides in the Muds and Waters Used in Thermal Therapy in Abano Terme, Italy. Radiat Protect Dosimetry. 1992; 45 (1/4): 175-178.
4. TATEO F, et. al. The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl Clay Science. 2009; 44(1-2): 83-94.
5. EL-ARABI AM, et al. Gamma-ray measurements of natural radioactivity in sedimetary rocks from Egypt. Nucl Sci and Tech. 2006; 17(2): 123-128.
6. UNITED NATIONS SCIENTIFIC COMMITTEE ON THE EFFECTS OF ATOMIC RADIATION. Sources and Effects of Ionising Radiation. UNSCEAR 2000 Report to the General Assembly. New York: UNSCEAR, 2000.
7. DÍAZ RIZO O, et. al. Levels of radioactivity and historical heavy metal enrichment in healing mud profi les from San Diego River, Cuba. Proceedings of the XIII Workshop on Nuclear Physics and VII International Symposium on Nuclear and Related Techniques. WONP-NURT’2011. Havana, Cuba. 2011.
8. DELACROIX D, GUERRE JP, et. al. Radionuclide and Radiation
Protection Data Handbook 2002. Radiat Prot Dosimetry. 2002; 98(1): 1-168.
9. ECKERMAN KF, RYMAN JC. External Exposure to Radionuclides in Air, Water and Soil. Federal Guidance Report No. 12. Washington, DC: US Environmental Protection Agency, 1993.
10. TOMÁS J, PRENDES M, et. al. Distribution of doses received
by Cuban population due to environmental sources of radioactivity. Radiat Protect Dosimetry. 2007; 123(1): 118- 121.

Most read articles by the same author(s)