SPECT/CT: main applications in nuclear medicine

Main Article Content

Alejandro Perera Pintado
Leonel A. Torres Aroche
Alex Vergara Gil
Juan F. Batista Cuéllar
Anaís Prats Capote

Abstract

SPECT/CT has represented not only the possibility of acquiring anatomical and functional images in one single study, but also a revolution for the clinical management of several diseases, taking the better of each one of these imaging modalities. The present work is aimed at presenting an overview of the most important applications of the SPECT/CT in the field of oncology, cardiology and neurology. New technological advances in the design of innovative solid state detectors and related equipment have had a positive effect on the performance of this kind of dual modality. This hybrid technique improves the sensitivity and the specificity of gammagraphic studies, as well as shortens the acquisition times and gives attenuation correction of co-registered images, which, in turn, makes their analysis easier. Some of the main applications for the study of oncological diseases are the following: localization and follow-up of different kinds of tumors, their metastasis and relapses, as well as the optimization of radiotherapy doses. This technique has been useful to evaluate the coronary artery disease allowing an adequate attenuation correction of images, the determination of calcium score, and performing angio-CT studies, according to the CT quality. SPECT/CT has also gained ground in the assessment of some neurological diseases. Conclusions: The introduction of new technological advances and radiopharmaceuticals thus predicting a more relevant place for SPECT/CT in clinical practice.

Article Details

How to Cite
Perera Pintado, A., Torres Aroche, L. A., Vergara Gil, A., Batista Cuéllar, J. F., & Prats Capote, A. (1). SPECT/CT: main applications in nuclear medicine. Nucleus, (62), 2-9. Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/2
Section
Panorama Nuclear

References

[1]. SEO Y, APARICI CA, HASEGAWA BH. Technological Development and Advances in SPECT/CT. Semin Nucl Med. 2008; 38(3): 177-198.
[2]. HISTED SN, LINDENBERG ML, MENA E, et. al. Review of Functional/ Anatomic Imaging in Oncology. Nucl Med Commun 2012; 33(4): 349-361.
[3]. O'CONNOR MK, KEMP BJ. Single-photon emission computed tomography/computed tomography: basic instrumentation and innovations. Semin Nucl Med. 2006; 36(4): 258-266.
[4]. BUCK AK, NEKOLLA S, ZIEGLER S, et. al. SPECT/CT. J Nucl Med 2008; 49(8): 1305-1319.
[5]. TAMAM M, MULAZIMOGLU M, EDIS N, OZPACACI T. The Value of Attenuation Correction in Hybrid Cardiac SPECT/CT on Inferior Wall According to Body Mass Index. World J Nucl Med. 2016; 15(1): 18-23.
[6]. BHARGAVA P, HE G, SAMARGHANDI A, DELPASSAND ES. Pictorial review of SPECT/CT imaging applications in clinical nuclear medicine. Am J Nucl Med Mol Imaging. 2012; 2(2): 221-231.
[7]. MAURER AH. Combined imaging modalities: PET/CT and SPECT/CT. Health Phys 2008; 95(5): 571-576.
[8]. DELBEKE D, SCHÖDER H, MARTIN WH, WAHL RL. Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med. 2009; 39(5): 308-340.
[9]. CIARMIELLO A, GIOVANNINI E, MENICONI M, et. al. Hybrid SPECT/CT imaging in neurology. Curr Radiopharm. 2014; 7(1): 5-11.
[10]. FLOTATS A, KNUUTI J, GUTBERLET M, et. al. Hybrid cardiac imaging: SPECT/CT and PET/CT. A joint position statement by the European Association of Nuclear Medicine (EANM), the European Society of Cardiac Radiology (ESCR) and the European Council of Nuclear Cardiology (ECNC). Eur J Nucl Med Mol Imaging. 2011; 38(1): 201-212.
[11]. SCHILLACI O. Hybrid SPECT/CT: a new era for SPECT imaging?. Eur J Nucl Med Mol Imaging 2005; 32(5): 521-524.
[12]. KOHL G. The evolution and state-of-the-art principles of multislice computed tomography. Proc Am Thorac Soc. 2005; 2(6):470-476.
[13]. FERRO-FLORES G, ARTEAGA DE MURPHY C. Estado actual y futuro de la gammagrafía SPECT/CT con Radiofármacos de 99mTc. Rev Invest Clin. 2007; 59(5): 373-381.
[14]. ACTON PD, KUNG HF. Small animal imaging with high resolution single photon emission tomography. Nucl Med Biol. 2003; 30: 889-895.
[15]. MEIKLE SR, KENCH P, KASSIOU M, BANATI RB. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys Med Biol. 2005; 50: R45-R61.
[16]. GERDEKOOHI SK, VOSOUGHI N, TANHA K, et al. Implementation of absolute quantification in small-animal SPECT imaging: Phantom and animal studies. J Appl Clin Med Phys. 2017; 18(4): 215-223.
[17]. BEEKMAN FJ, VAN DER HAVE F, VASTENHOUW B, VAN DER LINDEN AJA, et al. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J Nucl Med. 2005; 46: 1194-200.
[18]. CARRASQUILLO JA, CHEN CC. Molecular imaging of neuroendocrine tumors. Semin Oncol. 2010; 37(6): 662-679.
[19]. GOLDSMITH SJ. Update on nuclear medicine imaging of neuroendocrine tumors. Future Oncol 2009; 5(1): 75-84.
[20] BOMBARDIERI E, COLIVA A, MACCAURO M, et. al. Imaging of neuroendocrine tumours with gamma-emitting radiopharmaceuticals. Q J Nucl Med Mol Imaging. 2010; 54(1): 3-15.
[21]. KRAUSZ Y, KEIDAR Z, KOGAN I, et. al. SPECT/CT hybrid imaging with 111In-pentetreotide in assessment of neuroendocrine tumours. Clin Endocrinol (Oxf). 2003; 59: 565-573.
[22]. GABRIEL M, HAUSLER F, BALE R, MONCAYO R, et. al. Image fusion analysis of 99mTc-HYNICTyr3-octreotide SPECT and diagnostic CT using an immobilization device with external markers in patients with endocrine tumours. Eur J Nucl Med Mol Imaging. 2005; 32: 1440-1451.
[23]. MAXWELL JE, HOWE JR. Imaging in neuroendocrine tumors: an update for the clinician. Int J Endocr Oncol. 2015; 2(2): 159-168.
[24]. SERGIACOMI G, SCHILLACI O, LEPORACE M, LAVIANI F, et. al. Integrated multislice CT and Tc-99m sestamibi SPECT-CT evaluation of solitary pulmonary nodules. Radiol Med (Torino). 2006; 111: 213-24.
[25]. PRIDEAUX AR, SONG H, HOBBS RF, et. al. Three-dimensional radiobiologic dosimetry: application of radiobiologic modeling to patient-specific 3-dimensional imaging-based internal dosimetry. J Nucl Med. 2007; 48: 1008-1016.
[26]. 2006 Image of the year: focus on cardiac SPECT/CT. J Nucl Med. 2006; 47: 14N–15N.
[27]. PREUSS R, WEISE R, LINDNER O, et. al. Optimisation of protocol for low dose CT-derived attenuation correction in myocardial perfusion SPECT imaging. Eur J Nucl Med Mol Imaging. 2008; 35: 1133-1141.
[28]. O’ROURKE RA, BRUNDAGE BH, FROELICHER VF, et. al. American College of Cardiology/ American Heart Association Expert Consensus Document on electron-beam computed tomography for the diagnosis and prognosis of coronary artery disease. J Am Coll Cardiol. 2000; 36: 326-40.
[29]. BERETTA M. Avances en cardiología nuclear: fusión de imágenes. SPECT/TC, PET/TC. Rev. Urug. Cardiol. 2012; 27(1). Disponible en: www.scielo.edu.uy/pdf/ruc/v27n1/v27n1a09/pdf [consulta: abril de 2017].
[30]. GEPNER AD, YOUNG R, DELANEY JA, et. al. Comparison of Carotid Plaque Score and Coronary Artery Calcium Score for Predicting Cardiovascular Disease Events: The Multi?Ethnic Study of Atherosclerosis. J Am Heart Assoc. 2017; 6(2): e005179.
[31]. BUDOFF MJ, GUL KM. Expert review on coronary calcium. Vasc Health Risk Manag. 2008; 4(2): 315-324.
[32]. SCHEPIS T, GAEMPERLI O, KOEPFLI P, et. al. Added value of coronary artery calcium score as an adjunct to gated SPECT for the evaluation of coronary artery disease in an intermediate-risk population. J Nucl Med. 2007; 48: 1424-1430.
[33]. PICCINELLI M, GARCIA E. Multimodality image fusion for diagnosing coronary artery disease. J Biomed Res. 2013; 27(6): 439-451.
[34]. GAEMPERLI O, SCHEPIS T, VALENTA I, et. al. Cardiac image fusion from stand-alone SPECT and CT: Clinical experience. J Nucl Med. 2007; 48: 696-703.
[35]. RISPLER S, KEIDAR Z, GHERSIN E, et. al. Integrated single-photon emission computed tomography and computed tomography coronary angiography for the assessment of hemodynamically significant coronary artery lesions. J Am Coll Cardiol. 2007; 49: 1059-1067.
[36]. GAEMPERLI O, SCHEPIS T, KALFF V, et. al. Validation of a new cardiac image fusion software for three-dimensional integration of myocardial perfusion SPECT and stand-alone 64-slice CT angiography. Eur J Nucl Med Mol Imaging. 2007; 34: 1097-1106.
[37]. SAEED U, COMPAGNONE J, AVIV RI, et. al. Imaging biomarkers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Transl Neurodegener. 2017; 6: 8.
[38]. SULKIN TV, COUSENS C. SPECTCT cerebral perfusion scintigraphy; is the low dose CT component of diagnostic value?. Clin Radiol. 2008; 63: 289-298.
[39]. BLANKESPOOR SC, WU X, KALKI K, et. al. Attenuation correction of SPECT using x-ray CT on an emission-transmission CT system: Myocardial perfusion assessment. IEEE Trans Nucl Sci. 1996; 43: 2263-2274.
[40]. PLOUX L, MASTRIPPOLITO R. In vivo radiolabel quantification in small-animal models. Nucl Med Biol. 1999; 25: 737-742.

Most read articles by the same author(s)