Una mirada actualizada a las dificultades en la implementación y diseminación de los patrones dosimétricos secundarios
Contenido principal del artículo
Resumen
Un elemento básico para lograr la trazabilidad de las mediciones es la correcta implementación y diseminación de los patrones de medición. En el caso de la dosimetría, existen métodos armonizados de calibración a nivel internacional, sin embargo pueden presentarse dificultades en su introducción relacionadas con las características técnicas de los patrones y con los métodos descritos en los documentos técnicos. El uso de sistemas dosimétricos disponibles comercialmente como patrones secundarios impone un estudio personalizado de sus características técnicas. Los métodos recomendados no siempre se ajustan a la infraestructura disponible y se necesita entonces hacer modificaciones. En el artículo se realiza un análisis crítico de la implementación de patrones dosimétricos secundarios en el ámbito internacional a partir de las dificultades identificadas.
Detalles del artículo
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
Citas
[2]. International Electrotechnical Commission (IEC). Medical electrical equipment -dosimeters with ionization chambers as used in radiotherapy. IEC 60731. Edition 3.0. Geneva, 2011.
[3]. International Electrotechnical Commission (IEC). Medical electrical equipment - dosimetric instruments as used in brachytherapy. Part 1: Instruments based on well-type ionization chambers. IEC 62467-1. Edition 1.0. Geneva, 2009.
[4]. International Electrotechnical Commission (IEC). Medical electrical equipment - medical electrical equipment - dosimeters with ionization chambers and/or semiconductor detectors as used in X-ray diagnostic imaging. IEC 61674. Edition 2.0. Geneva, 2012.
[5]. International Organization for Standardization (ISO). X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy. Part 2: Dosimetry for radiation protection over energy ranges 8 keV to 1,3 MeV and 4 MeV to 9 MeV. ISO 4037-2. Geneva, 1997.
[6]. PTW. Long-term stability of PTW farmer type ionization chambers. PTW Technical Note D165.200.0/2. Freiburg: PTW, 1998.
[7]. International Organization of Legal Metrology (OIML). Measurement standards. Choice, recognition, use, conservation and documentation. OIML D8. Paris, 2004.
[8]. BÜERMANN L & BURNS DT. Air-kerma cavity standards. Metrologia. 2009; 46(2).
[9]. BURNS DT & BÜERMANN L. Free-air ionization chambers. Metrologia. 2009; 46(2).
[10]. SEUNTJENS J & DUANE S. Photon absorbed dose standards. Metrologia 2009; 46(2).
[11]. International Atomic Energy Agency (IAEA). Calibration of dosimeters used in radiotherapy. Technical Report Series 374. Vienna: IAEA, 1999.
[12]. International Atomic Energy Agency (IAEA). Calibration of radiation protection monitoring instruments. Safety Report Series No. 16. Vienna: IAEA, 2000.
[13]. International Atomic Energy Agency (IAEA). Dosimetry in diagnostic radiology: an international code of practice. Technical Report Series 457. Vienna: IAEA, 2007.
[14]. Organismo Internacional de Energía Atómica (OIEA). Calibración de fuentes de fotones y rayos beta usadas en braquiterapia. Guía de procedimientos estandarizados en Laboratorios Secundarios de Calibración Dosimétrica (LSCD) y en hospitales. IAEA-TECDOC- 1274/S. Viena: OIEA, 2004.
[15]. International Atomic Energy Agency (IAEA). SSDL network charter. The IAEA/WHO network of secondary standards dosimetry laboratories. Second edition. Vienna: IAEA, 2018.
[16]. International Organization for Standardization (ISO). X and gamma reference radiation for calibrating dosemeters and doserate meters and for determining their response as a function of photon energy. Part 1: Radiation characteristics and production methods. ISO4037. Geneva, 1996.
[17]. Bureau International de Poids et Mesures (BIPM). Qualités de rayonnement. CCEMRI. Section I Rayons x et γ, electrons. 2me réunion, 1972. Page R15 - first - R16 .
[18]. International Electrotechnical Commission (IEC). Medical diagnostic X-ray equipment. Radiation conditions for use in determination of characteristics. IEC 61267. Geneva, 2005.
[19]. AWUNOR OA, LECOMBER AR, RICHMOND N, WALKER C. A practical implementation of the 2010 IPEM high dose rate brachytherapy code of practice for the calibration of 192Ir sources. Phys. Med. Biol. 2011; 56(16): 5397-5410.
[20]. CARLSSON TEDGREN A, GRINDBORG JE. Audit on source strength determination for HDR and PDR 192Ir brachytherapy in Sweden”, Radiother. Oncol. 2008; 86(1): 126-130.
[21]. VAN DIJK E, KOLKMAN-DEURLOO, IK, DAMEN PM. Determination of the reference air kerma rate for 192Ir brachytherapy sources and the related uncertainty. Med. Phys. 2004; 31(10): 2826-2833.
[22]. STUMP KE, DEWERD LA, MICKA JA. ANDERSON DR. Calibration of new high dose rate 192Ir sources. Med. Phys. 2002; 29(7): 1483-1488.
[23]. NATH R, et. al. Code of practice for brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 56. American Association of Physicists in Medicine. Med. Phys. 1997; 24(10): 1557-1598.
[24]. International Atomic Energy Agency (IAEA). Status of brachytherapy dosimetry and the need for the development of an international protocol. SSDL Newsletter. Vol. 2, No.62, IAEA, Vienna (2013).
[25]. International Atomic Energy Agency (IAEA). Implementation of the international code of practice of dosimetry in radiotherapy (TRS 398): review of testing results. IAEA-TECDOC-1455. Vienna: IAEA, June 2005.
[26]. WALWYN G, GUTIERREZ S. Development and prospects on dosimetry at radiotherapy levels in the secondary dosimetry laboratory of Cuba. XI International IRPA Congress. España. Mayo, 2004.
[27]. LAUB WU, WONG T. The volume effect of detectors in the dosimetry of small fields used in IMRT. Med. Phys. 2003; 30(3): 341-347.
[28]. BOUCHARD H, SEUNTJENS J. Ionization chamber-based reference dosimetry of intensity modulated radiation beams. Med. Phys. 2004; 31(9): 2454-2465.
[29]. DAS IJ, DING GX, AHNESJÖ A. Small fields: nonequilibrium radiation dosimetry. Med. Phys. 2008; 35(1): 206-215.
[30]. International Atomic Energy Agency (IAEA). Absorbed dose determination in. external beam radiotherapy: an international code of practice for dosimetry. Technical Report Series 398. Vienna: IAEA, 2000.
[31]. ALFONSO R, ANDREO P, CAPOTE R, et. al. A new formalism for reference dosimetry of small and nonstandard fields. Med. Phys. 2008; 35(11): 5179-5186.
[32]. International Atomic Energy Agency (IAEA). Dosimetry of small static fields used in external beam radiotherapy. An international code of practice for reference and relative dose determination. Technical Report Series 483, Vienna: IAEA, 2017.
[33]. International Commission on Radiation Units and Measurements (ICRU). Report No. 90: Key data for ionizing-radiation dosimetry: measurement standards and applications. ICRU. Journal of the ICRU. 2014; 14(1).
[34]. BÜERMANN L, WALWYN SALAS G, ROMERO ACOSTA AL. Comparison of the national standards of air kerma between the PTB and the CPHR for selected x-radiation qualities used in radiation protection, diagnostic radiology and radiation therapy. Metrologia. 2020; 57(1A).
[35]. International Atomic Energy Agency (IAEA). Implementation of the international code of practice on dosimetry in diagnostic radiology (TRS 457): review of testing results. IAEA Human Health Series No.4. Vienna: IAEA, 2011.
[36]. KESSLER C. Establishment of simulated mammography radiation qualities at the BIPM. Rapport BIPM-06/08. Pavillon de Breteuil. F-92312 SEVRES cedex. 2006.
[37]. KESSLER C, ROGER P, BURNS D T. Establishment of reference radiation qualities for mammography. BIPM Rapport-2010/01. Pavillon de Breteuil. F-92312 SEVRES cedex. 2010.
[38]. WALWYN SALAS G, HOURDAKIS C, MARTINEZ A, GONZALEZ N, VERGARA A. Assuring the quality of the mammography calibrations in Cuban laboratory by comparison with Greek dosimetry standard. Proceedings of an International Symposium. Standards, Applications and Quality Assurance in Medical Radiation Dosimetry (IDOS). 9-12 November 2010. Book of the extended synopses. pp. 245-246. Vienna: IAEA, 2011.
[39]. KESSLER C, BURNS DT, BÜERMANN L. Key comparison BIPM. RI ( I ) -K7 of the air-kerma standards of the PTB , Germany and the BIPM in mammography x-rays. Metrologia. 2011; 48(1A): 06011.
[40]. CSETEI I, BÜERMANN L, GOMOLA I, GIRZIKOWSKY R. Comparison of air kerma measurements between the PTB and the IAEA for x-radiation qualities used in general diagnostic radiology and mammography. Metrologia. 2013; 50(1A): 06008.
[41]. KESSLER C, BURNS DT, CZAP L, et. al. Comparison of the air kerma standards of the IAEA and the BIPM in mammography x-rays. Metrologia. 2013; 50(1A): 06005.
[42]. KESSLER C, BURNS DT, MC CAFFREY JP. Key comparison BIPM.RI(I)-K7 of the air-kerma standards of the NRC, Canada and the BIPM in mammography x-rays. Metrologia. 2011; 48(1A): 06022.
[43]. KESSLER C, BURNS DT, STEURER A, et. al Key comparison BIPM.RI(I)-K7 of the air-kerma standards of the BEV, Austria and the BIPM in mammography x-rays. Metrologia. 2015; 52(1A): 06003.
[44]. WITZANI J, BJERKE H, BOCHUD F, et. al. Calibration of dosemeters used in mammography with different X ray qualities: Euromet Project No. 526. Radiat. Prot. Dosimetry. 2004; 108(1): 33-45.
[45]. ANKERHOLD U, HUPE O, AMBROSI P. Deficiencies of active electronic radiation protection dosimeters in pulsed fields. Radiat Protect Dosim. 2009; 135(3): 149-153.
[46]. GINZBURG D. Ionisation chamber for measurement of pulsed photon radiation fields. Radiat Protect Dosim. 2016; 174(3): 297-301.
[47]. KLAMMER J, ROTH J, HUPE O. Novel reference radiation fields for pulsed photon radiation installed at PTB. Radiat Protect Dosim. 2012; 151(3): 478-482.
[48]. International Atomic Energy Agency (IAEA). Technical and functional specification for border monitoring equipment, technical guidance. IAEA Nuclear Security Series No.1. Vienna: IAEA, 2006.