Radiofármacos de galio 68

José Morín Zorrilla, Jorge Cruz Arencibia

Resumen

La tomografía de emisión de positrones (PET) es una técnica de imagen médica de gran sensibilidad y resolución, que requiere radionúclidos emisores de positrones de corta vida. Los más comúnmente usados son el y el . La principal dificultad de estos radionúclidos es la necesidad de instalar un ciclotrón en el sitio de uso o a distancias no muy grandes de este, por lo que se han investigado radionúclidos más convenientes como el . Su disponibilidad a partir de los sistemas generadores de larga vida /, de los que se obtiene , utilizable durante tiempo un prolongado en sitios alejados del ciclotrón y la rica química de coordinación del , han posibilitado la incorporación a la práctica médica de algunos radiofármacos, así como la investigación de una variedad de complejos estables de acoplados a biomoléculas para el diagnóstico por imágenes de cáncer y enfermedades de los sistemas cardiovascular y nervioso. El presente trabajo se orienta a examinar las potencialidades de la radiofarmacia del .

Palabras clave

galio 68, radiofármacos, tomografía computarizada con positrón, tratamiento de imágenes, generadores de radisótopos

Texto completo:

PDF Epub HTML

Referencias

- BUCK AK, HERRMANN K, STARGARDT T, et. al. Economic Evaluation of PET and PET/CT in Oncology: Evidence and Methodologic Approaches. J. Nucl. Med. Technol. 2010; 38: 6-17 doi: 10.2967/jnmt.108.059584

- BAUMAN G, BELHOCINE T, KOVACS M, et. al. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis. 2012; 15(1): 45-55. doi: 10.1038/pcan.2011.35.

- PAGANI M, STONE-ELANDER S, LARSSON SA. Alternative positron emission tomography with non-conventional positron emitters: effects on their physical properties on image quality and potential clinical applications; Eur. J. Nuc. Med. 1997; 24(10):1301-1327.

- BARTHOLOMÄ MD., LOUIE AS., VALLIANT JF., ZUBIETA J. Technetium and Gallium derived radiopharmaceuticals: Comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem.Rev. 2010; 110: 2903-2920.

-ZHERNOSEKOV KP, FILOSOFOV DV, BAUM RP, et. al. Processing of generator-produced 68Ga for medical application. J Nucl Med. 2007; 48: 1741-1748.

- International Atomic Energy Agency. Cyclotron Produced Radionuclides: Physical Characteristics and Production Methods. Technical Report Series No 468. Vienna, IAEA, 2009.

-http://www2.chemistry.msu.edu/courses/CEM812/Hard_SoftAcid_Base.pdf

- JACKSON GE, BYRNE MJ. Metal Ion Speciation in Blood Plasma:Gallium-67-Citrate and MRJ Contrast Agent. J Nucl. Med. 1996; 37: 379-386.

- ANDERSON CJ, WELCH MJ. Radiometal-Labeled Agents (Non-Technetium) for Diagnostic Imaging. Chem. Rev. 1999, 99: 2219-2234.

- BERNSTEIN L. Mechanisms of Therapeutic Activity for Gallium. Pharmacological reviews. 1998; 50(4): 665-682.

- WELCH MJ, REDVANLY CS. Handbook of Radiopharmaceuticals, Radiochemistry and Applications. Chichester: John Miley & Sons Ltd, 2003.

- WADAS TJ, WONG EH, WEISMAN GR, ANDERSON CJ. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. Chem. Rev. 2010; 110: 2858-2902.

- DI CARLI MF, DORBALA S. Cardiac PET-CT. J Thorac Imaging. 2007; 22: 101-106.

- PLÖSSLA K, CHANDRAA R, QUA W, et. al. A novel gallium bisaminothiolate complex as a myocardial perfusion imaging agent. Nucl. Med. and Biology. 2008; 35: 83-90.

- HSIAO YM, MATHIAS CJ, WEY SP, et. al. Synthesis and biodistribution of lipophilic and monocationic gallium radiopharmaceuticals derived from N,N?-bis(3-aminopropyl)-N,N?-dimethylethylenediamine:potential agents for PET myocardial imaging with 68Ga. Nucl Med Biol. 2009; 36:39-45.

-TAKAHIRO M, JUN S, KOHEI S, et. al. Design of Ga-DOTA-based bifunctional radiopharmaceuticals: Two functional moieties can be conjugated to radiogallium-DOTA without reducing the complex stability. Bioorg. Med. Chem. 2009; 17: 4285-4289.

- TAN EH, GOH SW. Exploring new frontiers in molecular imaging: Emergence of 68Ga PET/CT. World J Radiol. 2010; 28 (2): 55-67.

- HOFMANN M, MAECKE H, BORNER A, et. al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Me. 2001; 28: 1751-1757.

- GABRIEL M, DECRISTOFORO C, KENDLER D, et. al. 68Ga-DOTA-Tyr3-Octreotide PET in Neuroendocrine Tumors: Comparison with Somatostatin Receptor Scintigraphy and CT. J Nucl Med. 2007; 48: 508-518.

- BAUM R. Ga-68 Labelled Radiopharmaceuticals for Molecular Imaging of Cancer Using PET/CT - Present State and Future Perspectives. [document en línea]2010 http://www.singaporeradiology2010.com/programme_detailed.pdf.

- DECRISTOFORO C, HERNÁNDEZ I, CARLSEN J, et. al. 68Ga- and 111In-labelled DOTA-RGD peptides for imaging of integrin expression. Eur J. Nucl. Med. Mol. Imaging. 2008; 35: 1507-1515.

- HAUBNER R, WESTER HJ, WEBER WA, et, al. Noninvasive imaging of integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 2001; 61: 1781-1785.

- VELIKYAN I. Synthesis, Characterization and Application of 68Ga-labelled Peptides and Oligonucleotides [Thesis for the filosofie licentiate degree] Department of Organic Chemistry, Institute of Chemistry, UPPSALA UNIVERSITY. January 2004

- ZIBO L, CONTI PS. Radiopharmaceutical chemistry for positron emission tomography. Advanced drug delivery reviews. 2010; 62(11): 1031-1051.