Evaluación de la carga radiacional sobre pacientes y trabajadores en el balneario Elguea, Cuba
Contenido principal del artículo
Resumen
Los balnearios de aguas termales procedentes de capas geológicas profundas se han identificado como escenarios típicos de exposición a radiaciones de origen natural, tanto para los pacientes que se someten a los tratamientos como para los trabajadores de estas instalaciones, debido a la permanencia en lugares con niveles incrementados de radiación. Por ello se realizan en estos balnearios estudios de caracterización dirigidos a evaluar el impacto radiológico que producen sobre estas categorías poblacionales. El balneario de Elguea, ubicado en la costa norte de Villa Clara, está equipado para brindar servicios que emplean las aguas termales y los lodos en la zona del balneario. Las aguas de este balneario contienen niveles significativos de radón. En este trabajo se presentan las estimaciones de dosis realizadas a partir de la caracterización radiológica del balneario y su entorno, tanto para los trabajadores como para los pacientes que reciben tratamientos. Los valores de dosis estimados se encontraron en el intervalo de 1,01 a 180 ?Sv/año para los trabajadores, que resultó ser el grupo más irradiado, y no indicaron la necesidad de adoptar medidas o regulaciones especiales de protección.
Detalles del artículo
Cómo citar
Zerquera, J. T., Fernández Gómez, I. M., Carrazana González, J., & Capote Ferrera, E. (1). Evaluación de la carga radiacional sobre pacientes y trabajadores en el balneario Elguea, Cuba. Nucleus, (49). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/544
Número
Sección
Ciencias Nucleares
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
Citas
1. EUROPEAN COMMISSION. Radiation Protection 88. Recommendations for the implementation of title VII of the European Basic Safety Standards Directive concerning significant increased in exposure due to natural radiation sources. European Commission, 1997.
2. PALOMARES LÓPEZ J, POZUELO CUERVO M. Análisis de la Radiactividad en aguas de los Balnearios de Alhama de Granada. Anal. Real Acad. Nac. Farm. 2002; 68: 373- 380.
3. DORETTI L, et. al. Natural Radionuclides in the Muds and Waters Used in Thermal Therapy in Abano Terme, Italy. Radiat Protect Dosimetry. 1992; 45 (1/4): 175-178.
4. TATEO F, et. al. The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl Clay Science. 2009; 44(1-2): 83-94.
5. EL-ARABI AM, et al. Gamma-ray measurements of natural radioactivity in sedimetary rocks from Egypt. Nucl Sci and Tech. 2006; 17(2): 123-128.
6. UNITED NATIONS SCIENTIFIC COMMITTEE ON THE EFFECTS OF ATOMIC RADIATION. Sources and Effects of Ionising Radiation. UNSCEAR 2000 Report to the General Assembly. New York: UNSCEAR, 2000.
7. DÍAZ RIZO O, et. al. Levels of radioactivity and historical heavy metal enrichment in healing mud profi les from San Diego River, Cuba. Proceedings of the XIII Workshop on Nuclear Physics and VII International Symposium on Nuclear and Related Techniques. WONP-NURT’2011. Havana, Cuba. 2011.
8. DELACROIX D, GUERRE JP, et. al. Radionuclide and Radiation
Protection Data Handbook 2002. Radiat Prot Dosimetry. 2002; 98(1): 1-168.
9. ECKERMAN KF, RYMAN JC. External Exposure to Radionuclides in Air, Water and Soil. Federal Guidance Report No. 12. Washington, DC: US Environmental Protection Agency, 1993.
10. TOMÁS J, PRENDES M, et. al. Distribution of doses received
by Cuban population due to environmental sources of radioactivity. Radiat Protect Dosimetry. 2007; 123(1): 118- 121.
2. PALOMARES LÓPEZ J, POZUELO CUERVO M. Análisis de la Radiactividad en aguas de los Balnearios de Alhama de Granada. Anal. Real Acad. Nac. Farm. 2002; 68: 373- 380.
3. DORETTI L, et. al. Natural Radionuclides in the Muds and Waters Used in Thermal Therapy in Abano Terme, Italy. Radiat Protect Dosimetry. 1992; 45 (1/4): 175-178.
4. TATEO F, et. al. The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Appl Clay Science. 2009; 44(1-2): 83-94.
5. EL-ARABI AM, et al. Gamma-ray measurements of natural radioactivity in sedimetary rocks from Egypt. Nucl Sci and Tech. 2006; 17(2): 123-128.
6. UNITED NATIONS SCIENTIFIC COMMITTEE ON THE EFFECTS OF ATOMIC RADIATION. Sources and Effects of Ionising Radiation. UNSCEAR 2000 Report to the General Assembly. New York: UNSCEAR, 2000.
7. DÍAZ RIZO O, et. al. Levels of radioactivity and historical heavy metal enrichment in healing mud profi les from San Diego River, Cuba. Proceedings of the XIII Workshop on Nuclear Physics and VII International Symposium on Nuclear and Related Techniques. WONP-NURT’2011. Havana, Cuba. 2011.
8. DELACROIX D, GUERRE JP, et. al. Radionuclide and Radiation
Protection Data Handbook 2002. Radiat Prot Dosimetry. 2002; 98(1): 1-168.
9. ECKERMAN KF, RYMAN JC. External Exposure to Radionuclides in Air, Water and Soil. Federal Guidance Report No. 12. Washington, DC: US Environmental Protection Agency, 1993.
10. TOMÁS J, PRENDES M, et. al. Distribution of doses received
by Cuban population due to environmental sources of radioactivity. Radiat Protect Dosimetry. 2007; 123(1): 118- 121.