MCP-PMT timing at low light intensities with a DRS4 evaluation board
Main Article Content
Abstract
Positron emission tomography (PET) is one of the most important diagnostic tools in medicine, allowing three-dimensional imaging of functional processes in the body. It is based on a detection of two gamma rays with an energy of 511 keV originating from the point of annihilation of the positron emitted by a radio-labeled agent. By measuring the difference of the arrival times of both annihilation photons it is possible to localize the tracer inside the body. Gamma rays are normally detected by a scintillation detector, whose timing accuracy is limited by a photomultiplier and a scintillator. By replacing a photo sensor with a microchannel plate PMT (MCP-PMT) and a scintillator with Cherenkov radiator, it is possible to localize the interaction position to the cm level. In a pioneering experimental study with Cherenkov detectors using PbF 2 crystals and microchannel plate photomultiplier tubes MCP-PMT a time resolution better than 100 ps was achieved. In this work a DRS4 digital ring sampler chip was used to read out single photon output signals from two different MCP-PMTs (Hamamatsu R3809 and Burle 85001) with a sampling rate of 5×109 samples/s. The digitized waveforms were analyzed and a comparison between the two detectors timing response was made. The time resolutions achieved were (161 ± 2.21) ps and (220 ± 2.63) ps FWHM for the Hamamatsu and Burle MCP-PMT respectively. No significant variances were observed in the study of the behavior of the FWHM when both MCP-PMT were scanned.
Article Details
How to Cite
Consuegra, D., Korpar, S., Pestotnik, R., Križan, P., & Dolenec, R. (2019). MCP-PMT timing at low light intensities with a DRS4 evaluation board. Nucleus, (65), 42-46. Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/678
Section
Ciencias Nucleares

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
[1] HUMM JL, ROSENFELD A, DEL GUERRA A. From PET detectors to PET scanners. Eur J Nucl Med and Mol Imag. 2003; 30(11). http://www.iss.infn.it/topem/TOF-PET/from%20pet%20detectors%20to%20pet%20scanners%20(EJNM).pdf.
[2] ZHOU L, DEFRISE M, VUNCKX K, NUYTS J. Comparison between parallel hole and rotating slat collimation: analytical noise propagation models. IEEE Transactions on Medical Imaging. 2010; 29(12). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5523954&tag=1.
[3] LECOQ P. Development of new scintillators for medical applications. Nucl Instrum and Meth in Phys Res A. 2016; 809. https://www.sciencedirect.com/science/article/pii/S0168900215009754.
[4] DOLENEC R, CHANGANI H, KORPAR S, et. al. Time-of-flight with photonics multi-channel MCP-PMT using MCP signal. IEEE Nuclear Science Symposium Conference Record. 2009. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5402278.
[5] KORPAR S, DOLENEC R, KRIŽAN P, PESTOTNIK R, STANOVNIKD A. Study of TOF PET using Cherenkov light. Physics Procedia. 2012; 37: 1531-1536. http://www.sciencedirect.com/science/article/pii/ S1875389212018718.
[6] DOLENEC R, KORPAR S, KRIŽAN P, PESTOTNIK R. Cherenkov TOF PET with silicon photomultipliers. Nucl Instrum and Meth in Phys Res A. 2015; 804: 127-131. https://www.sciencedirect.com/science/article/pii/S0168900215011146.
[7] KRIŽAN P, ADACHI I, FRATINA S, et. al. Tests of the Burle 85011 64-anode MCP-PMT as a detector of Cherenkov photons. Nucl Instrum Meth in Phys Res A. 2006; 567: 124-128. http://www.sciencedirect.com/science/article/pii/S0168900206008898.
[8] BITOSSI M, PAOLETTI R, TESCARO D. Ultra-fast sampling and data acquisition using the drs4 waveform digitizer. IEEE Transactions on Nucl Science. 2016; 63. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7488281.
[9] RAN A, BIN C, Y-FEN L, WEI K, RITT S. A new positron annihilation lifetime spectrometer based on DRS4 waveform digitizing board. Nucl Instrum and Meth in Chinese Physics C. 2014; 38. http://staff.ustc.edu.cn/~bjye/ye/papers/1674-1137_38_5_056001.pdf.
[10] HU W, CHOI Y, HONG K, et. al. A simple and improved digital timing method for positron emission tomography. Nucl Instrum and Meth in Phys Res A. 2010; 622: 219-224. http://med.stanford.edu/miil/publications/files/151_PUB.pdf.
[11] SURTI S. Update on time-of-flight PET imaging. J Nucl Med. 2015; 56: 98-105. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287223/pdf/nihms652988.pdf.
[12] AUFFRAY E, FRISCH B, GERACI F, GHEZZI A, et. al. A comprehensive systematic study of coincidence time resolution and light yield using scintillators of different size and wrapping. IEEE Transactions on Nuclear Science. 2013; 60: 3163. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6566141
[2] ZHOU L, DEFRISE M, VUNCKX K, NUYTS J. Comparison between parallel hole and rotating slat collimation: analytical noise propagation models. IEEE Transactions on Medical Imaging. 2010; 29(12). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5523954&tag=1.
[3] LECOQ P. Development of new scintillators for medical applications. Nucl Instrum and Meth in Phys Res A. 2016; 809. https://www.sciencedirect.com/science/article/pii/S0168900215009754.
[4] DOLENEC R, CHANGANI H, KORPAR S, et. al. Time-of-flight with photonics multi-channel MCP-PMT using MCP signal. IEEE Nuclear Science Symposium Conference Record. 2009. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5402278.
[5] KORPAR S, DOLENEC R, KRIŽAN P, PESTOTNIK R, STANOVNIKD A. Study of TOF PET using Cherenkov light. Physics Procedia. 2012; 37: 1531-1536. http://www.sciencedirect.com/science/article/pii/ S1875389212018718.
[6] DOLENEC R, KORPAR S, KRIŽAN P, PESTOTNIK R. Cherenkov TOF PET with silicon photomultipliers. Nucl Instrum and Meth in Phys Res A. 2015; 804: 127-131. https://www.sciencedirect.com/science/article/pii/S0168900215011146.
[7] KRIŽAN P, ADACHI I, FRATINA S, et. al. Tests of the Burle 85011 64-anode MCP-PMT as a detector of Cherenkov photons. Nucl Instrum Meth in Phys Res A. 2006; 567: 124-128. http://www.sciencedirect.com/science/article/pii/S0168900206008898.
[8] BITOSSI M, PAOLETTI R, TESCARO D. Ultra-fast sampling and data acquisition using the drs4 waveform digitizer. IEEE Transactions on Nucl Science. 2016; 63. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7488281.
[9] RAN A, BIN C, Y-FEN L, WEI K, RITT S. A new positron annihilation lifetime spectrometer based on DRS4 waveform digitizing board. Nucl Instrum and Meth in Chinese Physics C. 2014; 38. http://staff.ustc.edu.cn/~bjye/ye/papers/1674-1137_38_5_056001.pdf.
[10] HU W, CHOI Y, HONG K, et. al. A simple and improved digital timing method for positron emission tomography. Nucl Instrum and Meth in Phys Res A. 2010; 622: 219-224. http://med.stanford.edu/miil/publications/files/151_PUB.pdf.
[11] SURTI S. Update on time-of-flight PET imaging. J Nucl Med. 2015; 56: 98-105. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4287223/pdf/nihms652988.pdf.
[12] AUFFRAY E, FRISCH B, GERACI F, GHEZZI A, et. al. A comprehensive systematic study of coincidence time resolution and light yield using scintillators of different size and wrapping. IEEE Transactions on Nuclear Science. 2013; 60: 3163. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6566141