Monte Carlo simulation of the radiation transport in chromium compensated gallium arsenide detectors

Main Article Content

A. Leyva Fabelo
J. A. Rubiera Gimeno
D. Leyva Pernía
I. Piñera Hernández
A. Meneses
A. S. Zhemchugov
G. A. Chelkov
C. M. Cruz Inclán

Abstract

Some results obtained with the use of Monte Carlo mathematical simulation of radiation transport in Timepix hybrid detectors based on chromium compensated gallium arsenide are presented in this contribution. The MCNPX, GEANT4, SRIM and MCCM code systems were used for this purpose. The in-depth profiles of the deposited energy by the incident photons within the sensor active volume, the shapes and dimensions of the generated charge carriers clouds for different incident energies and specific geometrical conditions were obtained and presented. The 22Ne ions ranges in the target material for two different energies and the contributions of each energy loss channel were also determined. Finally, for a selected detector irradiated with photons of different energies, the displacement cross sections for each chemical element in the active material, as well as the number of displacements per atoms produced for each atomic species were calculated.

Article Details

How to Cite
Leyva Fabelo, A., Rubiera Gimeno, J. A., Leyva Pernía, D., Piñera Hernández, I., Meneses, A., Zhemchugov, A. S., Chelkov, G. A., & Cruz Inclán, C. M. (2019). Monte Carlo simulation of the radiation transport in chromium compensated gallium arsenide detectors. Nucleus, (64). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/659
Section
Ciencias Nucleares

References

[1] TYAZHEV V, BUDNITSKY DL, KORETSKAY OB, et. al. GaAs radiation imaging detectors with an active layer thickness up to 1mm. NIM A. 2003; 509: 34-39. doi:10.1016/S0168-9002(03)01545-6.
[2] ARDYSHEV MV, PRUDAJEV IA, KHLUDKOV SS. Diffusion of chromium into GaAs as a way to detector material making. Proceeding of IEEE International Siberian Conference on Control and Communications, SIBCON '05. October 21-22 2005. Tomsk, Russia. 2006. doi:10.1109/SIBCON.2005.1611195.
[3] LLOPART X, BALLABRIGA R, CAMPBELL M, et. al. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. NIM A. 2007; 581: 485-494. doi:10.1016/j.nima.2007.08.079.
[4] TLUSTOS L, SHELKOV G, TOLBANOV OP. Characterization of a GaAs:Cr Medipix2 hybrid pixel detector. NIM A. 2011; 633: S103-S107. doi:10.1016/j.nima.2010.06.137.
[5] GONGADZE A, ZHEMCHUGOV A, CHELKOV G, et. al. Alignment and resolution studies ofa MARS CT scanner. Phys. Part. Nucl. Lett. 2015; 12(5): 725-735. doi:10.1134/S1547477115050064.
[6] HENDRICKS JS, MCKINNEY GW, FENSIN ML, et al. MCNPX 2.6.0 Extensions. 2008. LA-UR-08-2216. Los Álamos National Laboratory. Los Álamos, USA.
[7] AGOSTINELLI S, ALLISON J, AMAKO K, et al. NIM A. 2003; 506: 250-303. doi:10.1016/S0168-9002(03)01368-8.
[8] ZIEGLER JF, ZIEGLER MD, BIERSACK JP. SRIM the stopping and range of ions in matter. NIM B. 2010; 268: 1818-1823. doi:10.1016/j.nimb.2010.02.091.
[9] PIÑERA I, CRUZ CM, ABREU Y, LEYVA A, et. al. Monte Carlo assisted classical method for the calculation of dpa distributions in solids materials. Proceeding of the IEEE Nuclear Science Symposium. October 19 - 25 2008. Dresden, Germany, 2008. doi:10.1109/NSSMIC.2008.4774878.
[10] CHEN N, GRAY S, HERNANDEZ-RIVERA E, et. al. Computational simulation of threshold displacement energies of GaAs. Journal of Materials Research. 2017; 32(8): 1555-1562. doi:10.1557/jmr.2017.46.
[11] PONS D, BOURGOIN JC. Irradiation-induced defects in GaAs. J. Phys. C: Solid State Phys. 1985; 18: 3839-3871. http://iopscience.iop.org/article/10.1088/0022-3719/18/20/012/meta.
[12] BARRY AL, MAXSEINER R, WOJCIK R, BRIERE MA, et al. An Improved Displacement Damage Monitor. IEEE Transactions on Nuclear Science. 1990; 31(6): 1726-1731. doi:10.1109/23.101183.
[13] FOILES SM. Molecular dynamics simulations of displacement cascades in GaAs. Joint U.S. Russia Conference on Advances in Materials Science. Session 2: Computational methods and radiation effects. August 30 - September 3, 2009. Prague, Czech Republic. http://nnsa.energy.gov/sites/default/files/ase/files/2-7-Foiles.pdf
[14] LEHMANN B, BRIERE MA, BRAEUNIG D, BARRY AL. Displacement threshold energy in GaAs determined by electrical and optical investigations. Proceeding of ESA Electronic Components Conference. Session B-2: Basic mechanism and dosimetry. November 12 - 16, 1990. Noordwijk, The Netherlands. SEE N91-32291 24-33.