The mile-stone of PET radiopharmaceuticals development

Main Article Content

Tatsuo Ido
Tania Valdés

Abstract

The positron emitting nuclides were already tried in 1940's as in vivo radio-tracers in the research field of medical biology. In 1976, the discovery of 18FDG with the developing of a positron imaging device, allowed to obtain the image of the human brain by PET technology. Today, 18FDG is widely used in tumour diagnosis by a metabolic trapping mechanism, which is a new concept for functional imaging and makes possible the monitoring of the therapy process. This is first milestone of PET radiopharmaceutical development. The second milestone is the establishment of a molecular imaging method in nuclear medicine and third, is the development of the theragnostic concept of radiopharmaceuticals. At present highlight works are focused in tau protein imaging for Alzheimer disease diagnosis and inflammation imaging.

Article Details

How to Cite
Ido, T., & Valdés, T. (1). The mile-stone of PET radiopharmaceuticals development. Nucleus, (60). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/629
Section
Ciencias Nucleares

References

[1] IDO T, WON CN, FOWLER JS, WOLF AP. Fluorination with F2. A Convenient Synthesis of 2-Deoxy-2-fluoo-D-glucose. J. Org. Chem. 1977; 42 (13): 2341-2342.
[2] IDO T, WON CN, CASELLA V, et. al. Labeled 2-deoxy-D-glucose analog. 18F-labeled 2-deoxy-2-fuluoro-D-glucose, 2-deoxy-2-fluoo-D-mannose and 14C-2-deoxy-2-fuluoro-D-glucose. J of Labelled Comp. and Radiopharm. 1978; 16(2): 175-183.
[3] REIVICH M, KUHL D, WOLF A, GREENBERG J, PHELPS M, IDO T, et. al. The [18F]Fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circulation Research. 1979; 44(1): 127-137.
[4] ISHIWATA K, IDO T, KAWAMURA M, et. al. 4-Boron-2-[18F]Fluoro-D,L-phenylalanine as a target compound for boron neutron capture therapy: tumour imaging potential with positron emission tomography. Nucl. Med. Biol. 1991; 18(7): 745-751.
[5] IMAHORI Y, UEDA S, OHMORI Y, KUSAKI T, ONO K, FUJII R, IDO T. Fruorine-18-labeled fluooboronophenylalanine PET in patients with glioma. J. Nucl. Med. 1998; 39(2): 325-333.
[6] TAKAHASHI T, IDO T, IWATA R. Synthesis of 17-[18F]fluoo-5-methylpentadecanoic Acid. Appl. Radiat. Isot. 1992; 43(6): 822-824.
[7] TAKAHASHI T, NISHIMURA S, IDO T, ISHIWATA K, IWATA R. Biological evaluation of 5-Methyl-branched-chain ?-[18F]Fluorofatty acid: a potencial myocardial imaging tracer for positron emission tomography. Nucl. Med. Biol. 1996; 23(3): 303-308.
[8] HATANO K, ISHIWATA K, KAWASHIMA K, HATAZAWA J, ITOH M, IDO T. D2-Dopamine receptor specificbrain uptake of carbon-11-labeled YM-09151-2. J. NUC. Med. 1989; 30(4): 515-522.
[9] ISHIWATA K, YANAI K, IDO T, MIURA Y, KAWASHMA K. Synthesis and biodistribution of [11C] fludiazepam for imaging benzodiazepine receptors. Nucl. Med. Biol. 1988; 15(4): 365-371.
[10] YANAI K, WATANABE T, YOKOYAMA H, MEGRO K, HATAZAWA J, ITOH M, et.al. Histamine H1 receptors in human brain visualized in vivo by [11C]doxepin and emission tomography. Neuroscience Letters. 1992; 137(2): 145-148.
[11] YANAI K, RYU JH, WATANABE T, IWATA R, IDO T, SAWAI Y, et. al. Histamine H1 receptor occupancy in human brain after single doses of histamine H1 antagonist measured by positron emission tomography. British J Pharmacology. 1995; 116(1): 1649-1655.
[12] HOLLAND JP, SHEH Y, LEWIS JS. Standardized methods for the production of high specific-activity zirconium-89. Nucl. Med. Biol. 2009; 36(7): 729-739.
[13] HOLLAND JP, DIVILOV V, BANDER NH, SMIS-JONES PM, LAR-SO N SM, LEVIS JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J. Nucl. Med. 2010; 51(8): 1293-1300.
[14] van de WATERRING FCJ, RIJPKEMA M, PERK L, BRINKMANN U, OYEN WJG, BOERMAN OC. Zirconium-89 labeled antibodies: a new tool for molecular imaging in cancer patients (review). BioMed Res Int. 2014; Article ID 203601 http://www.hindawi.com/journals/bmri/2014/203601.
[15] XIA CF, ARTEAGA J, CHEN G, GANGADHARMATH U, GOMEZ LF, et. al. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease. Alzheimer’s and Dementia. 2013; 9(6): 666-676.
[16] VILLEMAGNE VL, OKAMURA N. In vivo tau imaging: obstacle and progress. Alzheimer's and Dementia. 2014; 10(3): 254-264.
[17] HARADA R, OKAMURA N, FURUMOTO S, FURUKAWA K, ISHIKI A, TOMITA N, et. al. [18F]THK-5117 PET for assessing neurofibrillary pathology in Alzheimer's disease. Eur. J. Nucl. Med. Mol. Imaging. 2015; 42(7): 1052-1061.