Interaction of 1-iodochlordecone, as radioactive tracer, with the carboxylate group on activated carbon
Main Article Content
Abstract
Chlordecone is a synthetic organo chlorinated compound that has been used as pesticide. It has been identified and listed as persistent organic pollutant by the Stockholm Convention. The use of activated carbon filters is one of the most widely popular solutions for water decontamination. The chlordecone labeled with radioactive iodine (1-iodochordecone) is a potential radioactive tracer for studying adsorption, environmental availability and bio-distribution of chlordecone. The selection of the best suited activation carbon for this type of contaminants is mainly an empiric process, increasing the costs of research. A simplified activation carbon model, consisting of a seven ring graphene sheet with a functional group (carboxylate) was used to assess the interaction of chlordecone and 1-iodochlordecone with this surface group under neutral pH conditions over the adsorption process. The Multiple Minima Hypersurface methodology with the semiempirical Hamiltonian PM7 was used. The results indicate that for carboxylate, in neutral conditions, significant associations appear which suggest chemisorption in activated carbon. No significant differences were observed for the interactions of chlordecone and 1?iodochlordecone with carboxylate, making 1-iodochlordecone a good candidate as a radioactive tracer in medical research.
Article Details
How to Cite
Gamboa Carballo, J. J., & Melchor Rodríguez, K. (1). Interaction of 1-iodochlordecone, as radioactive tracer, with the carboxylate group on activated carbon. Nucleus, (59). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/619
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
[1] DALEY, JM, PATERSON G. & DROUILLARD KG. Bioamplification as a bioaccumulation mechanism for persistent organic pollutants (POPs) in wildlife. Rev Environ Contam Toxicol. 2014; 227: 107-155.
[2] MCLEOD, AM, PATERSON G, DROUILLARD KG. & HAFFNER GD. Ecological factors contributing to variability of persistent organic pollutant bioaccumulation within forage fish communities of the Detroit River, Ontario, Canada. EnvironToxicol Chem. 2014; 33(8): 1825-1831.
[3] PENG L, DAI X & YU, A. Assessment of the spatial and temporal distribution of legacy persistent organic pollutants and recommendations for sample collection from the surficial sediments of estuaries and seas in China. Chemosphere. 2015; 119(Suppl.): S138-S144.
[4] GRAHAM DW, OLIVARES RIEUMONT S, KNAPP CW, et. al. Antibiotic resistance gene abundances associated with waste discharges to the Almendares river near Havana, Cuba. Environmental Science and Technology. 2011; 45(2): 418-428.
[5] US. EPA. IRIS. Toxicological review of chlordecone (kepone) (External Review Draft). Washington, DC: U.S. Environmental Protection Agency, 2009. p. 1-119.
[6] United Nations. Report of the persistent organic pollutants review committee on the work of its second meeting. Addendum: risk profile on chlordecone. Stockholm Convention on Persistent Organic Pollutants. Persistent Organic Pollutants Review Committee. Second meeting. Geneva: UNEP, 2006. p. 1-27.
[7] CABIDOCHE YM, ACHARD R, CATTAN P, et. al. Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Environ Pollut. 2009; 157(5): 1697-1705.
[8] DE RIDDER DJ, Y MCCONVILLE M, VERLIEFDE ARD, .et.al. Development of a predictive model to determine micropollutant removal using granular activated carbon. Drink. Water Eng. Sci. 2009; 2(2): 57-62.
[9] TERZYK AP, GAUDEN PA, ZIELINSKI W, et. al. First molecular dynamics simulation insight into the mechanism of organics adsorption from aqueous solutions on microporous carbons. Chemical Phys Letters. 2011; 515(1-3): 102-108.
[10] ENRÍQUEZ VICTORERO C, HERNÁNDEZ VALDÉS D, MONTERO ALEJO AL, et. al. Theoretical study of ?-hexachlorocyclohexane and ?-hexachlorocyclohexane isomers interaction with surface groups of activated carbon model. J Mol Graph and Model. 2014; 51: 137-148.
[11] HERNÁNDEZ VALDÉS D, ENRIQUEZ VICTORERO C, PIZARRO LOU L, et. al. Interaction of paracetamol and 125I-paracetamol with surface groups of activated carbon: theoretical and experimental study.J Radioanal. Nucl Chem. 2015; 305(2): 609-622.
[12] HERNÁNDEZ VALDÉS D, ENRÍQUEZ VICTORERO C, JÁUREGUI HAZA U, et. al. Granada modificado con restricción geométrica. Revista Cubana de Ciencias Informáticas. 2013; 7(1): 9-15.
[13] DURIMEL A, ALTENOR S, MIRANDA QUINTANA RA, et. al. pH dependence of chlordecone adsorption on activated carbons and role of adsorbent physico-chemical properties. Chem Eng J. 2013; 229: 239-349
[2] MCLEOD, AM, PATERSON G, DROUILLARD KG. & HAFFNER GD. Ecological factors contributing to variability of persistent organic pollutant bioaccumulation within forage fish communities of the Detroit River, Ontario, Canada. EnvironToxicol Chem. 2014; 33(8): 1825-1831.
[3] PENG L, DAI X & YU, A. Assessment of the spatial and temporal distribution of legacy persistent organic pollutants and recommendations for sample collection from the surficial sediments of estuaries and seas in China. Chemosphere. 2015; 119(Suppl.): S138-S144.
[4] GRAHAM DW, OLIVARES RIEUMONT S, KNAPP CW, et. al. Antibiotic resistance gene abundances associated with waste discharges to the Almendares river near Havana, Cuba. Environmental Science and Technology. 2011; 45(2): 418-428.
[5] US. EPA. IRIS. Toxicological review of chlordecone (kepone) (External Review Draft). Washington, DC: U.S. Environmental Protection Agency, 2009. p. 1-119.
[6] United Nations. Report of the persistent organic pollutants review committee on the work of its second meeting. Addendum: risk profile on chlordecone. Stockholm Convention on Persistent Organic Pollutants. Persistent Organic Pollutants Review Committee. Second meeting. Geneva: UNEP, 2006. p. 1-27.
[7] CABIDOCHE YM, ACHARD R, CATTAN P, et. al. Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: a simple leaching model accounts for current residue. Environ Pollut. 2009; 157(5): 1697-1705.
[8] DE RIDDER DJ, Y MCCONVILLE M, VERLIEFDE ARD, .et.al. Development of a predictive model to determine micropollutant removal using granular activated carbon. Drink. Water Eng. Sci. 2009; 2(2): 57-62.
[9] TERZYK AP, GAUDEN PA, ZIELINSKI W, et. al. First molecular dynamics simulation insight into the mechanism of organics adsorption from aqueous solutions on microporous carbons. Chemical Phys Letters. 2011; 515(1-3): 102-108.
[10] ENRÍQUEZ VICTORERO C, HERNÁNDEZ VALDÉS D, MONTERO ALEJO AL, et. al. Theoretical study of ?-hexachlorocyclohexane and ?-hexachlorocyclohexane isomers interaction with surface groups of activated carbon model. J Mol Graph and Model. 2014; 51: 137-148.
[11] HERNÁNDEZ VALDÉS D, ENRIQUEZ VICTORERO C, PIZARRO LOU L, et. al. Interaction of paracetamol and 125I-paracetamol with surface groups of activated carbon: theoretical and experimental study.J Radioanal. Nucl Chem. 2015; 305(2): 609-622.
[12] HERNÁNDEZ VALDÉS D, ENRÍQUEZ VICTORERO C, JÁUREGUI HAZA U, et. al. Granada modificado con restricción geométrica. Revista Cubana de Ciencias Informáticas. 2013; 7(1): 9-15.
[13] DURIMEL A, ALTENOR S, MIRANDA QUINTANA RA, et. al. pH dependence of chlordecone adsorption on activated carbons and role of adsorbent physico-chemical properties. Chem Eng J. 2013; 229: 239-349