Application of an Elekta Precise lineal accelerator model based on Monte Carlo to evaluate the solid state detectors response
Main Article Content
Abstract
The evaluation of the solid state detectors response based on a Monte Carlo model of an Elekta Precise lineal accelerator, was done in this work for the beam energies of 6 y 15 MV. Simulations were performed using the EGSnrc code. Employing the optimal values of mean energy and FWHM from the primary electron beam, deposited dose in a voxelized water phantom at 100 cm of source to surface distance was calculated. Depth dose curves and lateral dose profi les were obtained. Comparison between simulations and the experimental values obtained for each detector, were done using acceptability criteria based on confi dence limits. Additionally outputs factors were analyzed in each one of the study cases. Good agreement between simulations and measurements were reached.
Article Details
How to Cite
Linares Rosales, H. M., Lara Mas, E., & Alfonso Laguardia, R. (1). Application of an Elekta Precise lineal accelerator model based on Monte Carlo to evaluate the solid state detectors response. Nucleus, (57). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/601
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
[1] KAWRAKOW I & WALTERS BRB. Efficient photon beam dose calculations using DOSXYZnrc with BEAMnrc. Med. Phys. 2006; 33(8): 3046-3056.
[2] TZEDAKIS A, DAMILAKIS JE, MAZONAKIS M, et. al. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams. Med. Phys. 2004; 31(4): 907-913.
[3] CHETTY IJ, CURRAN B, CYGLER JE, et. al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning.. Med. Phys. 2007; 34(12): 4818-4853.
[4] International Atomic Energy Agency. Absorbed dose determination in external beam radiotherapy: an International Code of Practice for dosimetry based on standards of absorbed dose to water. IAEA Technical Report Series 398. Vienna: IAEA, 2000.
[5] FRAASS B, DOPPKE K, HUNT M, et. al. American Association of Physicists in Medicine Radiation Therapy Committee Task Group No. 53: quality assurance for clinical radiotherapy treatment planning. Med.Phys. 1998; 25(10): 1773-1829.
[6] LINARES ROSALES HM. Aplicación del método Monte Carlo para la verificación de los planes de tratamiento de Radioterapia Avanzada. Tesis en opción al grado de máster en Ingeniería en Instalaciones Energéticas y Nucleares. La Habana: InSTEC, 2014.
[7] WESTERMARK M, ARNDT J, NILSSON B & BRAHME A. Comparative dosimetry in narrow high-energy photon beams. Phys. Med. Biol. 2000; 45(3): 685-702.
[8] EKLUND K & AHNESJÖ A. Modeling silicon diode energy response factors for use in therapeutic photon beams. Phys. Med. Biol. 2009; 54(20): 6135-6150.
[9] EKLUND K. Modeling Silicon diode dose response in radiotherapy fields using fluence pencil kernels. Doctoral Thesis. Faculty of Medicine. Uppsala University. Uppsala, 2010. ISBN 978-91-554-7748-6.
[10] SCOTT AJ, NAHUM AE & FENWICK JD. Monte Carlo modeling of small photon fields: quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements. Med. Phys. 2009; 36(7): 3132-3144.
[11] YIN Z, HUGTENBURG RP & BEDDOE AH. Response corrections for solid-state detectors in megavoltage photon dosimetry. Phys. Med. Biol. 2004; 49(16): 3691-3702.
[12] HEYDARIAN M, HOBAN PW, BEDDOE AH. Comparison of dosimetry techniques in stereotactic radiosurgery. Phys. Med. Biol. 1996; 41(1): 93-110.
[13] ASPRADAKIS MM, BYRNE JP, PALMANS H, et. al. Small field MV photon dosimetry. IPEM Report 103. New York: IPEM, 2010.
[14] MCKERRACHER C & THWAITES DI. Verification of the dose to the isocentre in stereotactic plans. Radiother. Oncol. 2002; 64(1): 97-107.
[15] BUCCIOLINI M, BUONAMICI FB, MAZZOCHI S, et. al. Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size. Med. Phys. 2003; 30(8): 2149-2154.
[16] DE ANGELIS C, ONORI S, PACILIO M, et. al. An investigation of the operating characteristics of two PTW diamond detectors in photon and electron beams. Med. Phys. 2002; 29(2): 248-254.
[17] LAUB WU, KAULICH TW & NUSSLIN F. Energy and dose rate dependence of a diamond detector in the dosimetry of 4–25 MV photon beams. Med. Phys. 24: 535–536, 1997.
[18] LAUB WU, KAULICH TW & NUSSLIN F. A diamond detector in the dosimetry of high-energy electron and photon beams. Phys. Med. 1999; 44(9): 2183-2192.
[19] International Atomic Energy Agency. Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer. IAEA Technical Report Series 430. Vienna: IAEA, 2003.
[20] VENSELAAR J, WELLEWEERDB H & MIJNHEER B. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother. Oncol. 2001; 60(2): 191.
[2] TZEDAKIS A, DAMILAKIS JE, MAZONAKIS M, et. al. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams. Med. Phys. 2004; 31(4): 907-913.
[3] CHETTY IJ, CURRAN B, CYGLER JE, et. al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning.. Med. Phys. 2007; 34(12): 4818-4853.
[4] International Atomic Energy Agency. Absorbed dose determination in external beam radiotherapy: an International Code of Practice for dosimetry based on standards of absorbed dose to water. IAEA Technical Report Series 398. Vienna: IAEA, 2000.
[5] FRAASS B, DOPPKE K, HUNT M, et. al. American Association of Physicists in Medicine Radiation Therapy Committee Task Group No. 53: quality assurance for clinical radiotherapy treatment planning. Med.Phys. 1998; 25(10): 1773-1829.
[6] LINARES ROSALES HM. Aplicación del método Monte Carlo para la verificación de los planes de tratamiento de Radioterapia Avanzada. Tesis en opción al grado de máster en Ingeniería en Instalaciones Energéticas y Nucleares. La Habana: InSTEC, 2014.
[7] WESTERMARK M, ARNDT J, NILSSON B & BRAHME A. Comparative dosimetry in narrow high-energy photon beams. Phys. Med. Biol. 2000; 45(3): 685-702.
[8] EKLUND K & AHNESJÖ A. Modeling silicon diode energy response factors for use in therapeutic photon beams. Phys. Med. Biol. 2009; 54(20): 6135-6150.
[9] EKLUND K. Modeling Silicon diode dose response in radiotherapy fields using fluence pencil kernels. Doctoral Thesis. Faculty of Medicine. Uppsala University. Uppsala, 2010. ISBN 978-91-554-7748-6.
[10] SCOTT AJ, NAHUM AE & FENWICK JD. Monte Carlo modeling of small photon fields: quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements. Med. Phys. 2009; 36(7): 3132-3144.
[11] YIN Z, HUGTENBURG RP & BEDDOE AH. Response corrections for solid-state detectors in megavoltage photon dosimetry. Phys. Med. Biol. 2004; 49(16): 3691-3702.
[12] HEYDARIAN M, HOBAN PW, BEDDOE AH. Comparison of dosimetry techniques in stereotactic radiosurgery. Phys. Med. Biol. 1996; 41(1): 93-110.
[13] ASPRADAKIS MM, BYRNE JP, PALMANS H, et. al. Small field MV photon dosimetry. IPEM Report 103. New York: IPEM, 2010.
[14] MCKERRACHER C & THWAITES DI. Verification of the dose to the isocentre in stereotactic plans. Radiother. Oncol. 2002; 64(1): 97-107.
[15] BUCCIOLINI M, BUONAMICI FB, MAZZOCHI S, et. al. Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size. Med. Phys. 2003; 30(8): 2149-2154.
[16] DE ANGELIS C, ONORI S, PACILIO M, et. al. An investigation of the operating characteristics of two PTW diamond detectors in photon and electron beams. Med. Phys. 2002; 29(2): 248-254.
[17] LAUB WU, KAULICH TW & NUSSLIN F. Energy and dose rate dependence of a diamond detector in the dosimetry of 4–25 MV photon beams. Med. Phys. 24: 535–536, 1997.
[18] LAUB WU, KAULICH TW & NUSSLIN F. A diamond detector in the dosimetry of high-energy electron and photon beams. Phys. Med. 1999; 44(9): 2183-2192.
[19] International Atomic Energy Agency. Commissioning and Quality Assurance of Computerized Planning Systems for Radiation Treatment of Cancer. IAEA Technical Report Series 430. Vienna: IAEA, 2003.
[20] VENSELAAR J, WELLEWEERDB H & MIJNHEER B. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiother. Oncol. 2001; 60(2): 191.