Raman D-band in the irradiated graphene: Origin of the non-monotonous dependence of its intensity with defect concentration
Main Article Content
Abstract
Raman spectroscopy is one of the experimental techniques more used in studying irradiated carbon nanostructures, in particular graphene, due to its high sensibility to the presence of defects in the crystalline lattice. Special attention has received the variation of the intensity of the Raman D-band of graphene with the concentration of defects produced by irradiation. Nowadays, there are enough experimental evidences about the non-monotonous character of that dependence, but the explanation of this behavior is still controversial. In the present work we developed a simplified mathematical model to obtain a functional relationship between these two magnitudes and showed that the non-monotonous dependence is intrinsic to the nature of the D-band and that it is not necessarily linked to amorphization processes. The obtained functional dependence was used to fit experimental data taken from other authors. The determination coefficient of the fitting was .
Article Details
How to Cite
Codorniu Pujals, D. (1). Raman D-band in the irradiated graphene: Origin of the non-monotonous dependence of its intensity with defect concentration. Nucleus, (53). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/579
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
1. GEIM AK. Graphene: Status and prospects. Science. 2009; 324(5934): 1531-1534.
2. CASTRO NETO AH, GUINEA F, PERES NMR, et. al. The electronic properties of grapheme. Rev. Mod. Physi. 2009; 81(1): 109-162.
3. COOPER DR, D'ANJOU B, GHATTAMANENI N, et. al. Experimental review of graphene. ISRN Condensed Matter Physics. 2012; 2012(article ID 501686): 1-56.
4. YAO J, SUN Y, YANG M, DUAN Y. Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J. Mater. Chem. 2012; 22(29): 14313-14329.
5. TAPASZTO L, DOBRIK G, NEMES-INCZE P, et. al. Tuning the electronic structure of graphene by ion irradiation. Phys.Rev. B. 2008; 78(1-4): 233407.
6. LETHINEN O, KOTAKOSKI J, KRASHENINNIKOV AV, et. al. Effect of ion bombardment on a two-dimensional target. Phys. Rev. B. 2010; 81(1-4): 153401.
7. LUCCHESE MM, STAVALE F, MARTINS FERREIRA EH, et. al. Quantifying ion-induced defects and Raman relaxation length in grapheme. Carbon. 2010; 48(5): 1592-1597.
8. CODORNIU PUJALS D, AGUILERA CORRALES Y, BALDASARRE F. Calculation of the number of atoms displaced during the irradiation of monolayer grapheme. J. Radioanal. Nucl. Chem, 2011; 289(1): 167-172.
9. MALARDAL M, PIMENTAM A, DRESSELHAUS G, DRESSELHAUS MS. Raman spectroscopy in grapheme. Physics Reports. 2009; 473(5-6): 51-87.
10. FERRARI C. AND ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 2000; 61(20): 14095-14101.
11. SAITO R, HOFMANN M, DRESSELHAUS G, et. al. Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics. 2011; 60(3): 413-550.
12. TUINSTRA F, KOENIG JL. Raman spectrum of graphite. J Chem. Phys. 1970; 53(3): 1126–30.
13. TEWELDEBRHAN D, BALANDIN A A. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 2009; 94(1): 013101-013103.
14. BUCHOWICZ G, STONE P, ROBINSON JT, et. al. Correlation between structure and electrical transport in ion-irradiated graphene grown on Cu foils. [artículo en línea]. Appl. Phys. Letters. 2011; 98(3): 032102. [consulta: feb 2013]
15. KRASHENNINIKOV AV, NORDLUND K. Ion and electron irradiation-induced effects in nanostructured materials. J.Appl. Phys. 2010; 107(7): 071301.
16. THOMSEN C, REICH S. Double Resonant Raman Scattering in Graphite. Phys. Rev. Lett. 2000; 85(24): 5214-5217.
17. VENEZUELA P, LAZZERI M, MAURI F. Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands [artículo en línea]. Phys Rev B. 2011; 84(3): 035433. [consulta: feb 2013]
18. LETHINEN O, KOTAKOSKI J, KRASHENNINIKOV AV, et. al. Effects of ion bombardenment in a two-dimensional target. Physical Review B. 2010; 81(15): 153401.
2. CASTRO NETO AH, GUINEA F, PERES NMR, et. al. The electronic properties of grapheme. Rev. Mod. Physi. 2009; 81(1): 109-162.
3. COOPER DR, D'ANJOU B, GHATTAMANENI N, et. al. Experimental review of graphene. ISRN Condensed Matter Physics. 2012; 2012(article ID 501686): 1-56.
4. YAO J, SUN Y, YANG M, DUAN Y. Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J. Mater. Chem. 2012; 22(29): 14313-14329.
5. TAPASZTO L, DOBRIK G, NEMES-INCZE P, et. al. Tuning the electronic structure of graphene by ion irradiation. Phys.Rev. B. 2008; 78(1-4): 233407.
6. LETHINEN O, KOTAKOSKI J, KRASHENINNIKOV AV, et. al. Effect of ion bombardment on a two-dimensional target. Phys. Rev. B. 2010; 81(1-4): 153401.
7. LUCCHESE MM, STAVALE F, MARTINS FERREIRA EH, et. al. Quantifying ion-induced defects and Raman relaxation length in grapheme. Carbon. 2010; 48(5): 1592-1597.
8. CODORNIU PUJALS D, AGUILERA CORRALES Y, BALDASARRE F. Calculation of the number of atoms displaced during the irradiation of monolayer grapheme. J. Radioanal. Nucl. Chem, 2011; 289(1): 167-172.
9. MALARDAL M, PIMENTAM A, DRESSELHAUS G, DRESSELHAUS MS. Raman spectroscopy in grapheme. Physics Reports. 2009; 473(5-6): 51-87.
10. FERRARI C. AND ROBERTSON J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 2000; 61(20): 14095-14101.
11. SAITO R, HOFMANN M, DRESSELHAUS G, et. al. Raman spectroscopy of graphene and carbon nanotubes. Advances in Physics. 2011; 60(3): 413-550.
12. TUINSTRA F, KOENIG JL. Raman spectrum of graphite. J Chem. Phys. 1970; 53(3): 1126–30.
13. TEWELDEBRHAN D, BALANDIN A A. Modification of graphene properties due to electron-beam irradiation. Appl. Phys. Lett. 2009; 94(1): 013101-013103.
14. BUCHOWICZ G, STONE P, ROBINSON JT, et. al. Correlation between structure and electrical transport in ion-irradiated graphene grown on Cu foils. [artículo en línea]. Appl. Phys. Letters. 2011; 98(3): 032102.
15. KRASHENNINIKOV AV, NORDLUND K. Ion and electron irradiation-induced effects in nanostructured materials. J.Appl. Phys. 2010; 107(7): 071301.
16. THOMSEN C, REICH S. Double Resonant Raman Scattering in Graphite. Phys. Rev. Lett. 2000; 85(24): 5214-5217.
17. VENEZUELA P, LAZZERI M, MAURI F. Theory of double-resonant Raman spectra in graphene: intensity and line shape of defect-induced and two-phonon bands [artículo en línea]. Phys Rev B. 2011; 84(3): 035433.
18. LETHINEN O, KOTAKOSKI J, KRASHENNINIKOV AV, et. al. Effects of ion bombardenment in a two-dimensional target. Physical Review B. 2010; 81(15): 153401.