Non clinical research at CENTIS supporting biotechnological and pharmaceutical industry
Main Article Content
Abstract
Drugs production is a highly demanding industry because of the high rigor of current regulations and standards which apply to manufacturing facilities. They are also required in the research and development stage. Our national biotechnological industry is developing and producing important drugs for national and international market to treat diseases like cancer. The Isotope Centre is an institution supporting such a development by means of a work platform to carry out researches in the field of pharmacokinetic and biodistribution in experimental models. Accumulated experience allows us to contribute to research and development of different kind of products (i.e. biotechnological), what represents a move towards the development of new technologies and the incorporation of appropriate methodologies to current standards. Radiolabeling is still a convenient choice to obtain images of drug distribution and kinetics. With the techniques currently available and those to be used in a near future, we can undertake to the most important researches required.
Article Details
How to Cite
Hernández González, I. (1). Non clinical research at CENTIS supporting biotechnological and pharmaceutical industry. Nucleus, (52). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/570
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
1. HEVESY G von. Adventures in radioisotope research: the collected papers. New York: Pergamon Press, 1962. vols. 1 and 2.
2. MOORE GE. Use of radioactive diiodofluorescein in the diagnosis and localization of brain tumors. Science. 1948; 107(2787): 569-571.
3. DALVIE D. Recent advances in the applications of radioisotopes in drug metabolism toxicology and pharmacokinetics. Curr. Pharm. Design. 2000; 6(10): 1009-28.
4. TUBIS M, POSNICK E, NORDYKE RA. Preparation and use of I 131 labeled sodium iodohippurate in kidney function tests. Proc Soc Exp Biol Med. 1960; 103: 497-498.
5. KAIMAL V, MCCONVILLE P. Importance of preclinical imaging in drug discovery. Technical Sheet. Charles River Laboratory International, Inc. 2009.
6. PAUWELS EK, et. al. FDG accumulation and tumor biology. Nucl. Med. Biol. 1998. 25(4): 317-322.
7. RUDD JH, et. al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods and recommendations. J Nucl Med. 2008; 498(6): 871-878.
8. SHIELDS AF, et. al. Imaging proliferation in vivo with [F-18] FLT and positron emission tomography. Nature Med. 1998; 4: 1334-1336.
9. FRANC BL, ACTON PD, MARI M, HASEGAWAY BH. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med. 2008; 49(10):1651-1663.
10. HENDEE WR, RUSSELL RITENOUR E. Medical imaging physics. John Wiley & Sons, Inc, 2002. Cuarta edición.
11. NARVÁEZ M, MERELLO E, TORIBIO C, BENLLOCH JM. Ciencias de la salud: diagnóstico por Imagen. estudio de prospectiva. Fundación OPTI y FENIN. Federación Española de Empresas de Tecnologías Sanitaria, 2009.
12. HENGERER A, MERTELMEIER T. Molecular biology for medical imaging. Electromedia. 2001; 69(1): 44-49.
13. CHATZIIOANNOU AF. Instrumentation for molecular imaging in preclinical research micro-pet and micro-spect. Proc Am Thorac Soc. 2005; 2(6): 533-536.
14. CASSIDY PJ, RADDA GK. Molecular imaging perspectives. J. R. Soc. Interface. 2005; 2(3): 133-144.
15. MASSOUD TF, GAMBHIR SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003; 17(5): 545-580.
16. DUCAT L. Obtención de prostaglandina A2 (PGA2) marcada con tritio. Rev Cub Farm. 1982; 16(3): 264-270.
17. DUCAT L. Obtención de ácido eicosatriénico marcado con tritio por hidrogenación catalítica. Radioquímica.1985; 3: 301.
18. PÉREZ X, DE LA PAZ N, GARCÍA L. Formulación liposómica de propionato de clobetasol. (Patente WO-02/07702.). 2002.
19. FRAKER PJ, SPECK JC Jr. Protein and cell membrane iodinations with a sparingly soluble Iodogen. Biochem. Biophys. Res. Commun. 1978; 80(4): 849-857.
20. HEINRICH TK, KRAUS W, PIETZSCH HJ, et. al. Novel rhenium chelate system derived from dimercaptosuccinic acid for the selective labeling of biomolecules. Inorg. Chem. 2005; 44(26): 9930-9937.
21. PERERA Y, FARINA HG, HERNÁNDEZ I, et. al. Systemic administration of a peptide that impairs the Protein Kinase (CK2) phosphorylation reduces solid tumor growth in mice. Int. J. Cancer. 2008; 122(1): 57-62.
22. PEREA SE, REYES O, BALADRON I, et. al. CIGB-300, a novel proapoptotic peptide that impairs the CK2 phosphorylation and exhibits anticancer properties both in vitro and in vivo. Mol Cell Biochem. 2008; 316(1-2):163-167.
23. PEREA SE, BALADRON I, GARCIA Y, et. al. CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoaceptordomain. Translational and clinical research. Mol Cell Biochem. 2011; 356(1-2): 45-50.
24. RODRÍGUEZ J, DI PIERRO D, GIOIA M, et. al. Effect of a natural extract from Mangiferaindica L. and its active compound, mangiferin, on energy stage and lipid peroxidation of red blood cells. Biochim Biophys Acta. 2006; 1760: 1333-1342.
25. CRUZ ARENCIBIA J, et. al. Fosfato de cromo (III) marcado con diferentes radionúclidos para uso en radiosinoviortesis. Rev Cubana Farm. 2012; 46(2): 162-172.
26. SHEINER LB, ROSENBERG B, MARATHE VV. Estimation of population characteristics of population pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977; 5(5): 445-479.
27. ROY A, ETTE EI. A pragmatic approach to the design of population pharmacokinetic studies. AAPS J. 2005; 7(2): E408-E420.
28. United States Food and Drug Administration. Guidance for industry: population pharmacokinetics. Washington, DC: United States Food and Drug Administration, 1999.
29. Directive 81/852/EEC as amended. Conduct of pharmacokinetic studies in animals. 1992.
30. BENDER G, FLORIAN JA, BRAMWELL S, et. al. Pharmacokinetic-pharmacodynamic analysis of the static allodynia response to pregabalin and sildenafil in a rat model of neuropathic pain. J Pharmacol Exp Ther. 2010; 334(2): 599-608.
31. LEE SH, GHIM JL, SONG MH, et. al. Pharmacokinetics and pharmacodynamics of a new reformulated microemulsion and the long-chain triglyceride emulsion of propofol in beagle dog. Brit J Pharm. 2009; 158(8): 1982-1995.
32. AARONS L, GRAHAM G. Methodological approaches to the population analysis of toxicity data. Toxicology Letters. 2001; 120(1-3): 405-410.
33. LIXOFT SA. MONOLIX versión 4.1.0 [software en línea]. [diciembre 2011].
34. SAVIC R M, MENTRÉ F, LAVIELLE M. Implementation and evaluation of the saem algorithm for longitudinal ordered categorical data with an illustration in pharmacokinetics-pharmacodynamics. AAPS J. 2011; 13(1): 45-53.
35. BROWN RP, DELP MD, LINDSTEDT SL. Physiological parameters values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997; 13(4): 407-484.
2. MOORE GE. Use of radioactive diiodofluorescein in the diagnosis and localization of brain tumors. Science. 1948; 107(2787): 569-571.
3. DALVIE D. Recent advances in the applications of radioisotopes in drug metabolism toxicology and pharmacokinetics. Curr. Pharm. Design. 2000; 6(10): 1009-28.
4. TUBIS M, POSNICK E, NORDYKE RA. Preparation and use of I 131 labeled sodium iodohippurate in kidney function tests. Proc Soc Exp Biol Med. 1960; 103: 497-498.
5. KAIMAL V, MCCONVILLE P. Importance of preclinical imaging in drug discovery. Technical Sheet. Charles River Laboratory International, Inc. 2009.
6. PAUWELS EK, et. al. FDG accumulation and tumor biology. Nucl. Med. Biol. 1998. 25(4): 317-322.
7. RUDD JH, et. al. Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods and recommendations. J Nucl Med. 2008; 498(6): 871-878.
8. SHIELDS AF, et. al. Imaging proliferation in vivo with [F-18] FLT and positron emission tomography. Nature Med. 1998; 4: 1334-1336.
9. FRANC BL, ACTON PD, MARI M, HASEGAWAY BH. Small-animal SPECT and SPECT/CT: important tools for preclinical investigation. J Nucl Med. 2008; 49(10):1651-1663.
10. HENDEE WR, RUSSELL RITENOUR E. Medical imaging physics. John Wiley & Sons, Inc, 2002. Cuarta edición.
11. NARVÁEZ M, MERELLO E, TORIBIO C, BENLLOCH JM. Ciencias de la salud: diagnóstico por Imagen. estudio de prospectiva. Fundación OPTI y FENIN. Federación Española de Empresas de Tecnologías Sanitaria, 2009.
12. HENGERER A, MERTELMEIER T. Molecular biology for medical imaging. Electromedia. 2001; 69(1): 44-49.
13. CHATZIIOANNOU AF. Instrumentation for molecular imaging in preclinical research micro-pet and micro-spect. Proc Am Thorac Soc. 2005; 2(6): 533-536.
14. CASSIDY PJ, RADDA GK. Molecular imaging perspectives. J. R. Soc. Interface. 2005; 2(3): 133-144.
15. MASSOUD TF, GAMBHIR SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003; 17(5): 545-580.
16. DUCAT L. Obtención de prostaglandina A2 (PGA2) marcada con tritio. Rev Cub Farm. 1982; 16(3): 264-270.
17. DUCAT L. Obtención de ácido eicosatriénico marcado con tritio por hidrogenación catalítica. Radioquímica.1985; 3: 301.
18. PÉREZ X, DE LA PAZ N, GARCÍA L. Formulación liposómica de propionato de clobetasol. (Patente WO-02/07702.). 2002.
19. FRAKER PJ, SPECK JC Jr. Protein and cell membrane iodinations with a sparingly soluble Iodogen. Biochem. Biophys. Res. Commun. 1978; 80(4): 849-857.
20. HEINRICH TK, KRAUS W, PIETZSCH HJ, et. al. Novel rhenium chelate system derived from dimercaptosuccinic acid for the selective labeling of biomolecules. Inorg. Chem. 2005; 44(26): 9930-9937.
21. PERERA Y, FARINA HG, HERNÁNDEZ I, et. al. Systemic administration of a peptide that impairs the Protein Kinase (CK2) phosphorylation reduces solid tumor growth in mice. Int. J. Cancer. 2008; 122(1): 57-62.
22. PEREA SE, REYES O, BALADRON I, et. al. CIGB-300, a novel proapoptotic peptide that impairs the CK2 phosphorylation and exhibits anticancer properties both in vitro and in vivo. Mol Cell Biochem. 2008; 316(1-2):163-167.
23. PEREA SE, BALADRON I, GARCIA Y, et. al. CIGB-300, a synthetic peptide-based drug that targets the CK2 phosphoaceptordomain. Translational and clinical research. Mol Cell Biochem. 2011; 356(1-2): 45-50.
24. RODRÍGUEZ J, DI PIERRO D, GIOIA M, et. al. Effect of a natural extract from Mangiferaindica L. and its active compound, mangiferin, on energy stage and lipid peroxidation of red blood cells. Biochim Biophys Acta. 2006; 1760: 1333-1342.
25. CRUZ ARENCIBIA J, et. al. Fosfato de cromo (III) marcado con diferentes radionúclidos para uso en radiosinoviortesis. Rev Cubana Farm. 2012; 46(2): 162-172.
26. SHEINER LB, ROSENBERG B, MARATHE VV. Estimation of population characteristics of population pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977; 5(5): 445-479.
27. ROY A, ETTE EI. A pragmatic approach to the design of population pharmacokinetic studies. AAPS J. 2005; 7(2): E408-E420.
28. United States Food and Drug Administration. Guidance for industry: population pharmacokinetics. Washington, DC: United States Food and Drug Administration, 1999.
29. Directive 81/852/EEC as amended. Conduct of pharmacokinetic studies in animals. 1992.
30. BENDER G, FLORIAN JA, BRAMWELL S, et. al. Pharmacokinetic-pharmacodynamic analysis of the static allodynia response to pregabalin and sildenafil in a rat model of neuropathic pain. J Pharmacol Exp Ther. 2010; 334(2): 599-608.
31. LEE SH, GHIM JL, SONG MH, et. al. Pharmacokinetics and pharmacodynamics of a new reformulated microemulsion and the long-chain triglyceride emulsion of propofol in beagle dog. Brit J Pharm. 2009; 158(8): 1982-1995.
32. AARONS L, GRAHAM G. Methodological approaches to the population analysis of toxicity data. Toxicology Letters. 2001; 120(1-3): 405-410.
33. LIXOFT SA. MONOLIX versión 4.1.0 [software en línea].
34. SAVIC R M, MENTRÉ F, LAVIELLE M. Implementation and evaluation of the saem algorithm for longitudinal ordered categorical data with an illustration in pharmacokinetics-pharmacodynamics. AAPS J. 2011; 13(1): 45-53.
35. BROWN RP, DELP MD, LINDSTEDT SL. Physiological parameters values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997; 13(4): 407-484.