Monte Carlo calculation of carbon atom displacement damage in c60 fullerene bulk materials irradiated with gamma rays
Main Article Content
Abstract
The displacement per carbon atom cross-sections behaviors with the secondary electron and positron kinetic energy for spherical fullerene C60 molecules are calculated. To accomplish this, the McKinley–Feshbach approach and the Kinchin-Pease approximation were taking into account, using two different displacement threshold energies. The total displacements per atom number generated indirectly by the photons in bulk samples composed of C60 fullerenes is also calculated. Besides, the behaviors of secondary particles contributions with the used displacement threshold energies and incident photon energies are determined. The in-depth distribution of electron and positron contributions and their relationship with the total displacements number are presented and debated. It was found that the positrons contribution to the total atom displacements number is very significant in processes involving the interaction of gamma quanta with energy up to 100 MeV in C60 fullerenes bulk samples.
Article Details
How to Cite
Leyva Fabelo, A., Piñera Hernández, I., Leyva Pernía, D., Cruz Inclán, C. M., & Abreu Alfonso, Y. (1). Monte Carlo calculation of carbon atom displacement damage in c60 fullerene bulk materials irradiated with gamma rays. Nucleus, (51). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/560
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
1. Progress in Nanotechnology: Applications. The American Ceramic Society. John Wiley & Sons, 2009.
2. FULEKAR MH. Nanotechnology: Importance and Applications. International Pvt Ltd., 2010.
3. AMBROSIO M, ARAMO C, CARILLO V, et. al. A novel photon detector made of silicon and carbon nanotubes. Nuclear Instruments and Methods in Physics Research A. 2010; 617(1-2): 378-380.
4. HEISTER E, NEVES V, LAMPRECHT C, et. al. Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon. 2012; 50(2): 622-632.
5. KROTO H, HEATH JR, O'BRIEN S, et. al. C60: Buckminsterfullerene. Nature. 1985; 318(6042): 162-163.
6. Langa De La Puente F, Nierengarten JF. Fullerenes: Principles and Application. 2nd edition. RSC Publishing, 2011.
7. SAWAMURA M, KAWAI KI, MATSUO Y, et. al. Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals. Nature. 2002; 419: 702- 705.
8. PARTHA R, CONYERS JL. Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomedicine. 2009; (4): 261-275.
9. JOVANOVIC SP, MARKOVIC ZM, KLEUT DN, et. al. A novel method for the functionalization of gamma-irradiated single wall carbon nanotubes with DNA. Nanotechnology. 2009; 20(44): 4456021-4456028.
10. CATALDO F, GOBBINO M, RAGNI P. Radiation-induced trichloromethylation of C60 fullerene in carbon tetrachloride. Fullerenes, Nanotubes and Carbon Nanoestructures, 2007; 15(5): 379-393.
11. BANHAR F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999; 62(8): 1181-1221.
12. KWON J, MOTTA AT. Gamma displacement cross-sections in various materials. Annals Nucl Energy. 2000; 27(18): 1627-1642.
13. GERASIMOV GY. Radiation stability of carbon nanostructures. J Eng Phys Thermophys. 2010; 83(2): 393-400.
14. DMYTRENKO OP, KULISH NP, BELYI NM, et. al. Dose dependences of the optical properties of fullerene films subjected to the electron irradiation. Thin Solid Films. 2006; 495(1-2): 365-367.
15. CUI FZ, LI HD, HUANG X Y. Atomistic simulation of radiation damage to C60. Phys. Rev. B, 1994; 49(14): 9962-9965.
16. MCKINLEY WA, FESHBACH H. The coulomb scattering of relativistic electrons by nuclei. Phys. Rev. 1948; 74(12): 1759-1763.
17. PIÑERA I, Cruz CM, ABREU Y, LEYVA A. Monte Carlo simulation study of the positron contribution to displacements per atom production in YBCO superconductors. Nucl Instr and Meth in Phys Res B. 2008; 266(22): 4899-4902.
18. KINCHIN GH, PEASE RS. The displacement of atoms in solids by radiation. Rep. Prog. Phys. 1955; 18(1): 1-51.
19. PIÑERA I, CRUZ C, ABREU Y, et. al. Monte Carlo assisted classical method for the calculation of dpa distribution in solid materials. IEEE Nuclear Science Symposium Conference Record 2008 NSS’08. 19-25 Oct. p. 2557-2560. doi: 10.1109/NSSMIC.2008.4774878.
20. ARTRU X, FOMINB SP, SHUL’GA NF, et. al. Carbon nanotubes and fullerites in highenergy and X-ray physics. Physics Reports. 2005; 412(2-3): 89-189.
[21] HENDRICKS JS, MCKINNEY GW, TRELLUE HR, et. al. MCNPXTM Version 2.6.B LAUR- 06-3248. Los Alamos National Laboratory Report, 2006.
22. OEN OS, HOLMES DK. Cross-sections of atomic displacements in solids by gamma rays. J. Appl. Phys. 1959; 30(8): 1289-1295.
23. ARCE P, RATO P, LAGARES JI. GAMOS: an easy and flexible framework for Geant4 simulations. IEEE Proc. Nuc. Sci. Symp. Conf. Rec. 2008. p.3162 - 3168. Art. no. 4775023
2. FULEKAR MH. Nanotechnology: Importance and Applications. International Pvt Ltd., 2010.
3. AMBROSIO M, ARAMO C, CARILLO V, et. al. A novel photon detector made of silicon and carbon nanotubes. Nuclear Instruments and Methods in Physics Research A. 2010; 617(1-2): 378-380.
4. HEISTER E, NEVES V, LAMPRECHT C, et. al. Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon. 2012; 50(2): 622-632.
5. KROTO H, HEATH JR, O'BRIEN S, et. al. C60: Buckminsterfullerene. Nature. 1985; 318(6042): 162-163.
6. Langa De La Puente F, Nierengarten JF. Fullerenes: Principles and Application. 2nd edition. RSC Publishing, 2011.
7. SAWAMURA M, KAWAI KI, MATSUO Y, et. al. Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals. Nature. 2002; 419: 702- 705.
8. PARTHA R, CONYERS JL. Biomedical applications of functionalized fullerene-based nanomaterials. Int J Nanomedicine. 2009; (4): 261-275.
9. JOVANOVIC SP, MARKOVIC ZM, KLEUT DN, et. al. A novel method for the functionalization of gamma-irradiated single wall carbon nanotubes with DNA. Nanotechnology. 2009; 20(44): 4456021-4456028.
10. CATALDO F, GOBBINO M, RAGNI P. Radiation-induced trichloromethylation of C60 fullerene in carbon tetrachloride. Fullerenes, Nanotubes and Carbon Nanoestructures, 2007; 15(5): 379-393.
11. BANHAR F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 1999; 62(8): 1181-1221.
12. KWON J, MOTTA AT. Gamma displacement cross-sections in various materials. Annals Nucl Energy. 2000; 27(18): 1627-1642.
13. GERASIMOV GY. Radiation stability of carbon nanostructures. J Eng Phys Thermophys. 2010; 83(2): 393-400.
14. DMYTRENKO OP, KULISH NP, BELYI NM, et. al. Dose dependences of the optical properties of fullerene films subjected to the electron irradiation. Thin Solid Films. 2006; 495(1-2): 365-367.
15. CUI FZ, LI HD, HUANG X Y. Atomistic simulation of radiation damage to C60. Phys. Rev. B, 1994; 49(14): 9962-9965.
16. MCKINLEY WA, FESHBACH H. The coulomb scattering of relativistic electrons by nuclei. Phys. Rev. 1948; 74(12): 1759-1763.
17. PIÑERA I, Cruz CM, ABREU Y, LEYVA A. Monte Carlo simulation study of the positron contribution to displacements per atom production in YBCO superconductors. Nucl Instr and Meth in Phys Res B. 2008; 266(22): 4899-4902.
18. KINCHIN GH, PEASE RS. The displacement of atoms in solids by radiation. Rep. Prog. Phys. 1955; 18(1): 1-51.
19. PIÑERA I, CRUZ C, ABREU Y, et. al. Monte Carlo assisted classical method for the calculation of dpa distribution in solid materials. IEEE Nuclear Science Symposium Conference Record 2008 NSS’08. 19-25 Oct. p. 2557-2560. doi: 10.1109/NSSMIC.2008.4774878.
20. ARTRU X, FOMINB SP, SHUL’GA NF, et. al. Carbon nanotubes and fullerites in highenergy and X-ray physics. Physics Reports. 2005; 412(2-3): 89-189.
[21] HENDRICKS JS, MCKINNEY GW, TRELLUE HR, et. al. MCNPXTM Version 2.6.B LAUR- 06-3248. Los Alamos National Laboratory Report, 2006.
22. OEN OS, HOLMES DK. Cross-sections of atomic displacements in solids by gamma rays. J. Appl. Phys. 1959; 30(8): 1289-1295.
23. ARCE P, RATO P, LAGARES JI. GAMOS: an easy and flexible framework for Geant4 simulations. IEEE Proc. Nuc. Sci. Symp. Conf. Rec. 2008. p.3162 - 3168. Art. no. 4775023