Biomonitoring of the atmospheric pollution in Havana during 2004-2005 survey
Main Article Content
Abstract
An epiphytic lichen (physcia alba sp.) grown over Royal Palm (Roystonea regia) tree was used as bioindicator of air quality in Havana City. A total of 225 lichen samples were collected in 181 selected sites according to traffic and industrial conditions. The concentrations of 15 elements (Na, Mg, Al, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Cd and Pb) were determined by Atomic Absorption Spectrophotometry, Total Reflection X-Ray Fluorescence and Anodic Stripping Voltammetry. Principal Component Analysis was applied to analytical results and some factors were obtained. Finally, maps with lichen elemental contents and factors’ patterns are presented. Several possible pollution sources were identified.
Article Details
How to Cite
Estévez Alvarez, J., Montero Alvarez, A., & López Sánchez, D. (1). Biomonitoring of the atmospheric pollution in Havana during 2004-2005 survey. Nucleus, (50). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/553
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
1. Validation and application of plants as biomonitors of trace element atmospheric pollution, analyzed by nuclear and related techniques. Report of on the Second Research Co-ordination Meeting. NAHRES-63. Vienna: IAEA, 2001. 218 p.
2. WOLTERBEEK B. Large scaled biomonitoring of trace elements air pollution: goals and approaches. Radiat Phys and Chem. 2001; 61(3-6): 323-327.
3. GONZÁLEZ CM, ORELLANA L, CASANOVAS SS, PIGNATA ML. Environmental conditions and chemical response of a transplanted lichen to an urban area. J Environ Manag. 1998; 53(1): 73-81.
4. HAWKSWORTH DL. The fungal partner. Handbook of lichenology. Vol. III. Boca Ratón: CRC Press, 1988. p. 35-38.
5. JAMES PW. The effect of air pollutants other than hydrogen fluoride and sulphur dioxide on lichens. In: Air Pollution and Lichens. 1973. p.143-75389
6. LAAKSOVIRTA K., OLKKONEN H. Epyphytic lichen vegetation and element contents of Hypogimnia physodes and pine needles examined as indicators of air pollution at Kokkola, W. Finland. Ann. Bot. Fennici.
1977; 14: 112-130.
7. FOLKENSON L. Interspecies calibration of heavy-metal concentrations in nine mosses and lichens: Applicability to deposition measurements. Water, Air and Soil Pollution. 1979; 11: 253-260.
8. MARTIN MH, COUNGHTREY PJ. Biological Monitoring of Heavy Metal Pollution. London: Applied Science Publishers. 1982; 475 p.
9. PUCKETT KJ. Bryophytes and lichens as monitors of metal deposition. Lichens, Bryophytes and Air Quality. Bibliotheca Lichenologica. 1988; 30: 231-267.
10. PUCKETT KJ, NIEBOER E, GORZYNSKI MJ, RICHARDSON DHS. The uptake of metal ions by lichens: A modifi ed ion-exchange process. New Phytol. 1973; 72: 329-342.
11. MARKERT B. Plants as Biomonitors. Indicators for Heavy Metals in the Terrestrial Environment. Weinheim: VCH, 1993. p. 193-257.
12. RUHLING A. Atmospheric Heavy Metal Deposition in Europe – Estimation Based on Moss Analysis. NORD 1984:9. Copenhagen: NORDIC Council of Ministers, 1994. p. 53.
13. WANNAZ ED, PIGNATA ML. Calibration of Four Species of Tillandsia as Air Pollution Biomonitors. Journal of Atmospheric Chemistry. 2006; 53: 185-209.
14. WANNAZ ED, CARRERAS H, PÉREZ C. Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. Sci Total Environ. 2006; 36(1-3): 267-278.
15. RUSU AM, JONES GC, CHIMONIDES PD, PURVIS OW. Biomonitoring using the lichen Hypogymnia physodes and bark samples near Zlatna, Romania immediately following closure of a copper ore-processing plant. Environ Poll. 2006; 143: 81-88.
16. CARRERA HA, PIGNATA ML. Effects of the heavy metals Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada. Ecotoxicology and Environmental Safety. 2007; 67: 59-66.
17. GODINHO RM, WOLTERBEEK HTH, VERBURG T, FREITAS MC. Bioaccumulation behavior of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environ Poll. 2008; 151(2): 318-325.
18. PINHO P, AUGUSTO S, MÁGUAS C, et. al. Impact of neighbourhood land-cover in epiphytic lichen diversity: Analysis of multiple factors working at different spatial scales. Environ Poll. 2008; 151(2): 414-422.
19. MONTERO ALVAREZ A, et. al. Multi-elemental determination in lichens collected from Havana city. Proceedings NURT-2001. Havana, Cuba. 22-26 de octubre 2001.
20. MONTERO A, ESTÉVEZ JR, IGLESIAS H, et. al. Lichen based biomonitoring of air quality in Havana City west side. J of Radioanal and Nucl Chem. 2006; 270(1): 63-67.
21. MONTERO A, ESTÉVEZ JR, PADILLA R, LÓPEZ D. Analytical performance of some methods for the determination of trace elements in lichens used as air quality assessment. J Radioanal Nucl Chem. 2009; 281(3): 569-575.
22. ISO 8466-1. Water quality-calibration and evaluation of analytical methods and estimation of performance characteristics. Part 1: Statistical evaluation of the linear calibration function. 1990.
23. VOGELGESANG J, et. al. Limits of detection, identifi cation and determination: statistical approach for practitioner. Accred. Qual. Assur. 1998; 3(6): 242-249.
24. BENNETT J, WETMORE C. 16-Year trends in elements of lichens at Theodore Roosevelt National Park, North Dakota. Sci Total Environ. 2000; 263(1-3): 231-241.
25. NRIAGU JO. Natural versus anthropogenic emissions of trace metals to the atmosphere. In: Control and Fate of Atmospheric Trace Metals. NATO ASI. Series Vol. 268. The Netherlands: Kluwer Academic Publishers, 1989. p. 3-13.
2. WOLTERBEEK B. Large scaled biomonitoring of trace elements air pollution: goals and approaches. Radiat Phys and Chem. 2001; 61(3-6): 323-327.
3. GONZÁLEZ CM, ORELLANA L, CASANOVAS SS, PIGNATA ML. Environmental conditions and chemical response of a transplanted lichen to an urban area. J Environ Manag. 1998; 53(1): 73-81.
4. HAWKSWORTH DL. The fungal partner. Handbook of lichenology. Vol. III. Boca Ratón: CRC Press, 1988. p. 35-38.
5. JAMES PW. The effect of air pollutants other than hydrogen fluoride and sulphur dioxide on lichens. In: Air Pollution and Lichens. 1973. p.143-75389
6. LAAKSOVIRTA K., OLKKONEN H. Epyphytic lichen vegetation and element contents of Hypogimnia physodes and pine needles examined as indicators of air pollution at Kokkola, W. Finland. Ann. Bot. Fennici.
1977; 14: 112-130.
7. FOLKENSON L. Interspecies calibration of heavy-metal concentrations in nine mosses and lichens: Applicability to deposition measurements. Water, Air and Soil Pollution. 1979; 11: 253-260.
8. MARTIN MH, COUNGHTREY PJ. Biological Monitoring of Heavy Metal Pollution. London: Applied Science Publishers. 1982; 475 p.
9. PUCKETT KJ. Bryophytes and lichens as monitors of metal deposition. Lichens, Bryophytes and Air Quality. Bibliotheca Lichenologica. 1988; 30: 231-267.
10. PUCKETT KJ, NIEBOER E, GORZYNSKI MJ, RICHARDSON DHS. The uptake of metal ions by lichens: A modifi ed ion-exchange process. New Phytol. 1973; 72: 329-342.
11. MARKERT B. Plants as Biomonitors. Indicators for Heavy Metals in the Terrestrial Environment. Weinheim: VCH, 1993. p. 193-257.
12. RUHLING A. Atmospheric Heavy Metal Deposition in Europe – Estimation Based on Moss Analysis. NORD 1984:9. Copenhagen: NORDIC Council of Ministers, 1994. p. 53.
13. WANNAZ ED, PIGNATA ML. Calibration of Four Species of Tillandsia as Air Pollution Biomonitors. Journal of Atmospheric Chemistry. 2006; 53: 185-209.
14. WANNAZ ED, CARRERAS H, PÉREZ C. Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. Sci Total Environ. 2006; 36(1-3): 267-278.
15. RUSU AM, JONES GC, CHIMONIDES PD, PURVIS OW. Biomonitoring using the lichen Hypogymnia physodes and bark samples near Zlatna, Romania immediately following closure of a copper ore-processing plant. Environ Poll. 2006; 143: 81-88.
16. CARRERA HA, PIGNATA ML. Effects of the heavy metals Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada. Ecotoxicology and Environmental Safety. 2007; 67: 59-66.
17. GODINHO RM, WOLTERBEEK HTH, VERBURG T, FREITAS MC. Bioaccumulation behavior of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environ Poll. 2008; 151(2): 318-325.
18. PINHO P, AUGUSTO S, MÁGUAS C, et. al. Impact of neighbourhood land-cover in epiphytic lichen diversity: Analysis of multiple factors working at different spatial scales. Environ Poll. 2008; 151(2): 414-422.
19. MONTERO ALVAREZ A, et. al. Multi-elemental determination in lichens collected from Havana city. Proceedings NURT-2001. Havana, Cuba. 22-26 de octubre 2001.
20. MONTERO A, ESTÉVEZ JR, IGLESIAS H, et. al. Lichen based biomonitoring of air quality in Havana City west side. J of Radioanal and Nucl Chem. 2006; 270(1): 63-67.
21. MONTERO A, ESTÉVEZ JR, PADILLA R, LÓPEZ D. Analytical performance of some methods for the determination of trace elements in lichens used as air quality assessment. J Radioanal Nucl Chem. 2009; 281(3): 569-575.
22. ISO 8466-1. Water quality-calibration and evaluation of analytical methods and estimation of performance characteristics. Part 1: Statistical evaluation of the linear calibration function. 1990.
23. VOGELGESANG J, et. al. Limits of detection, identifi cation and determination: statistical approach for practitioner. Accred. Qual. Assur. 1998; 3(6): 242-249.
24. BENNETT J, WETMORE C. 16-Year trends in elements of lichens at Theodore Roosevelt National Park, North Dakota. Sci Total Environ. 2000; 263(1-3): 231-241.
25. NRIAGU JO. Natural versus anthropogenic emissions of trace metals to the atmosphere. In: Control and Fate of Atmospheric Trace Metals. NATO ASI. Series Vol. 268. The Netherlands: Kluwer Academic Publishers, 1989. p. 3-13.