Study of silicon microstrips detector quantum efficiency using mathematical simulation

Main Article Content

Diana Leyva Pernía
Ana Esther Cabal Rodríguez
Ibrahin Piñera Hernández

Abstract

The paper shows the results from the application of mathematical simulation to study the quantum efficiency of a microstrips crystalline silicon detector, intended for medical imaging and the development of other applications such as authentication and dating of cultural heritage. The effects on the quantum efficiency of some parameters of the system, such as the detector-source geometry, X rays energy and detector dead zone thickness, were evaluated. The simulation results were compared with the theoretical prediction and experimental available data, resulting in a proper correspondence. It was concluded that the use of frontal confi guration for incident energies lower than 17 keV is more effi cient, however the use of the edge-on configuration for applications requiring the detection of energy above this value is recommended. It was also found that the reduction of the detector dead zone led to a considerable increase in quantum efficiency for any energy value in the interval from 5 to 100 keV.

Article Details

How to Cite
Leyva Pernía, D., Cabal Rodríguez, A. E., & Piñera Hernández, I. (1). Study of silicon microstrips detector quantum efficiency using mathematical simulation. Nucleus, (49). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/546
Section
Ciencias Nucleares

References

1. ALEKSEEV AG, BELOV AM, ZABRODSKII VV. A 16 × 16 hybrid matrix array detector for visualizing XUV plasma radiation. Instruments and Experimental Techniques. 2010; 53(2): 209-212.
2. BERGAMASCHI A, CERVELLINO A, DINAPOLI R, et. al. Photon counting microstrip detector for time resolved powder diffraction experiments. Nucl. Instrum. and Methods in Phys Res Section A. 2009; 604(1-2): 136-139.
3. FERNÁNDEZ M, DUARTE J, GONZÁLEZ J, et. al. Infraredtransparent microstrip detectors. Nucl Instr and Meth in Phys Res Section A. 2009; 598(1): 84-85.
4. PARZEFALL U, DALLA G, ECKERT S, et. al. Silicon microstrip detectors in 3D technology for the sLHC. Nucl Instr and Meth in Phys Res Section A. 2009; 607(1): 17-20.
5. LEYVA A, MONTAÑO LM, DÍAZ CC, et. al. Empleo de detector semiconductor de c-Si del tipo microbandas en la obtención de imágenes radiográfi cas digitales de maniquíes y muestras biológicas de mamas. Revista Mexicana de Física. 2009; 55(4): 327-331.
6. KNOLL GF. Radiation detection and measurement. 3rd edition. John Wiley & Sons Inc., 1999.
7. Base de datos XCOM de NIST [en línea]. [consultado: 12-07-2010].
8. BRIESMEISTER JF. MCNPXTM User’s Manual. Los Álamos National Laboratory, 2008.

Most read articles by the same author(s)