Implementation and development of methods for quantification of cerebral blood flow in absolute units using single photon emission tomography
Main Article Content
Abstract
The aim of this work was to implement the graphical and spectral methods of quantification of cerebral blood flow in absolute units with Single photon emission computered tomography and compare the results of its application. Also, a third method was developed to calculate blood flow, modifying the spectral method. The obtained flow values were 43.6 6.1 ml/min/100 g; 43.3 8.2 ml/min/100 g and 43.04.7 ml/min/100 g, respectively. We conclude that these methods are easy, non invasive and can be made in our country’s technological conditions. The main innovation in this work was the modification of the spectral method, with which it is possible to avoid some of the difficulties arisen in the other methods. Also, the use of the software allows high reproducibility and efficiency on the process. These methods can become a valuable tool to enhance clinical diagnosis and important biomedical research.
Article Details
How to Cite
Díaz Moreno, R. M., Sánchez Catasús, C., & Águila Ruiz, Ángel. (1). Implementation and development of methods for quantification of cerebral blood flow in absolute units using single photon emission tomography. Nucleus, (39). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/472
Issue
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
[1] CAMARGO E, BRAIN E. SPECT in Neurology and Psychiatry. J of Nucl Med. 2001; 42(4).
[2] ÁLVAREZ LI FC. Epidemiología de la enfermedad cerebrovascular en Cuba. Revista de Neurología. 1999; 29(9).
[3] VAN HEERTUM RL, TIKOFSKY R. Functional cerebral SPECT and PET imaging. New York: Lippincott Williams and Wilkins, 2000. 3ra ed.
[4] LATCHAW R. Cerebral Perfusion Imaging in Acute Stroke. J vasc and interv Radiol. 2004; 15: S29-S46.
[5] SÁNCHEZ CATASÚS CA. Métodos para el mejoramiento de la cuantificación relativa del flujo sanguíneo cerebral mediante tomografía por emisión de fotones (SPECT). Tesis de doctorado. 2002.
[6] SÁNCHEZ CATASÚS CA, et. al. Factores que afectan la cuantificación en SPECT. Revista Española de Física Medica. junio 2003.
[7] KANNO I, LASSEN NA. Two methods for calculating regional cerebral blood flow from emision computed tomography of inert gas concentrations. J. Comput. Assist. Tomogr. 1981; 5: 641.
[8] TSUCHIDA T, et. al. Quantification of regional cerebral blood flow with continuous infusion of technetium-99m-ethyl cysteinate dimer. J Nucl Med. 1997; 38(11).
[9] ODANO I, et. al. Noninvasive quantification of cerebral blood flow using 99mTc-ECD and SPECT. J Nucl Med. 1999; 40(10).
[10] HATAZAWA J, et. al. Regional cerebral blood flow measurements with iodine-123-IMP autoradiography: normal values, reproducibility and sensitivity to hypoperfusion. J Nucl Med. 1997; 38(7).
[11] MATSUDA H, et. al. A quantitative approach to technetium 99 hexamethyl propylene amine oxime. European J Nucl Med. 1992; 19: 195-200.
[12] MATSUDA H, et. al. Noninvasive measurements of regional cerebral blood flow using technetium-99m hexamethylprophylene amine oxime. Eur J Nucl Med. 1993; 20: 391-401.
[13] MATSUDA H, et. al. A quantitative approach to technetium-99m-ethyl cysteinate dimer: a comparison with technetium-99m-hexamethylpropylene amine oxime. Eur J. Nucl. Med. 1995; 22.
[14] MURASE K, et. al. An alternative approach to estimation of the brain perfusion index for measurement of cerebral blood flow using technetium-99m compounds. Eur J Nucl Med. 1999. 26(10).
[15] PATLAK CS, et. al. Graphical evaluation of blood to brain transfer constants from multiple time uptake data. J. Cerebral Blood Flow and Metab. 1983; 3(1).
[16] DÍAZ MORENO RM. Cuantificación del Flujo Sanguíneo cerebral en unidades absolutas mediante tomografía por emisión de fotones (SPECT). Experiencias iniciales. Tesis presentada en opción al título de Licenciado en Física Nuclear. Instituto Superior de Ciencias y Tecnologías Nucleares. La Habana, 2003.
[17] MURASE K, et. al. Reproducibility of the brain perfusion index for measuring cerebral blood flow using technetium 99m compounds. Eur J Nucl Med. 2001; 28.
[18] VAN LAERE K, et. al. Variability Study of a non invasive approach to the absolute quantification of cerebral blood flow with Tc-99m-ECD using aortic activity as the arterial input estimate. Nucl Med communications 1999; 20.
[19] TAKASAWA M, et. al. Automatic determination of Brain Perfusion Index for measurement of cerebral blood flow using spectral analysis and HMPAO. Eur J Nucl Med. 2002; 29.
[20] TAKASAWA M, et. al. Interobserver variability of cerebral blood flow measurements obtained using spectral analysis and technetium-99m labeled compounds. Ann Nucl Med. 2003; 17(3).
[21] VAN LAERE K, et. al. Non-invasive methods for absolute cerebral blood flow measurement using 99mTc-ECD: a study in healthy volunteers. Eur J Nucl Med. 2001; 28(7).
[22] CUNNINGHAM VJ, JONES T. Spectral analysis of dynamic PET studies. J. Cereb Blood Flow Metab. 1993; 13: 15–23.
[23] CATAFAU A. Brain SPECT in Clinical Practice. Part I: Perfusion. J Nucl Med. 42(2).
[24] OGASAWARA K, et. al. Cerebrovascular Reactivity to Acetazolamide and Outcome in Patients With Symptomatic Internal Carotid or Middle Cerebral Artery Occlusion. A Xenon-133 Single-Photon Emission Computed Tomography Study. Stroke. 2002; 33.
[25]TAKEUCHI R, et. al. Noninvasive quantitative measurements of regional cerebral blood flow using flow using technetium-99m-L, L-ECD SPECT activated with acetazolamide: quantification, analysis by equal-volume-split 99mTc-ECD consecutive SPECT method. J. Cereb Blood Flow Metab. 1997; 17.
[26] NISHIZAWA, S. et al., Regional dynamics of N-isopropyl-(123I)p- iodoamphetamine in human brain. J Nucl Med. 1989; 30(2): 150-156.
[27] KENTARO I, et. al. Database of normal human cerebral blood flow measured by SPECT: II. Quantification of I123-IMP studies with ARG method and effects of partial volume correction. Ann Nucl Med. 2006; 20(2).
[2] ÁLVAREZ LI FC. Epidemiología de la enfermedad cerebrovascular en Cuba. Revista de Neurología. 1999; 29(9).
[3] VAN HEERTUM RL, TIKOFSKY R. Functional cerebral SPECT and PET imaging. New York: Lippincott Williams and Wilkins, 2000. 3ra ed.
[4] LATCHAW R. Cerebral Perfusion Imaging in Acute Stroke. J vasc and interv Radiol. 2004; 15: S29-S46.
[5] SÁNCHEZ CATASÚS CA. Métodos para el mejoramiento de la cuantificación relativa del flujo sanguíneo cerebral mediante tomografía por emisión de fotones (SPECT). Tesis de doctorado. 2002.
[6] SÁNCHEZ CATASÚS CA, et. al. Factores que afectan la cuantificación en SPECT. Revista Española de Física Medica. junio 2003.
[7] KANNO I, LASSEN NA. Two methods for calculating regional cerebral blood flow from emision computed tomography of inert gas concentrations. J. Comput. Assist. Tomogr. 1981; 5: 641.
[8] TSUCHIDA T, et. al. Quantification of regional cerebral blood flow with continuous infusion of technetium-99m-ethyl cysteinate dimer. J Nucl Med. 1997; 38(11).
[9] ODANO I, et. al. Noninvasive quantification of cerebral blood flow using 99mTc-ECD and SPECT. J Nucl Med. 1999; 40(10).
[10] HATAZAWA J, et. al. Regional cerebral blood flow measurements with iodine-123-IMP autoradiography: normal values, reproducibility and sensitivity to hypoperfusion. J Nucl Med. 1997; 38(7).
[11] MATSUDA H, et. al. A quantitative approach to technetium 99 hexamethyl propylene amine oxime. European J Nucl Med. 1992; 19: 195-200.
[12] MATSUDA H, et. al. Noninvasive measurements of regional cerebral blood flow using technetium-99m hexamethylprophylene amine oxime. Eur J Nucl Med. 1993; 20: 391-401.
[13] MATSUDA H, et. al. A quantitative approach to technetium-99m-ethyl cysteinate dimer: a comparison with technetium-99m-hexamethylpropylene amine oxime. Eur J. Nucl. Med. 1995; 22.
[14] MURASE K, et. al. An alternative approach to estimation of the brain perfusion index for measurement of cerebral blood flow using technetium-99m compounds. Eur J Nucl Med. 1999. 26(10).
[15] PATLAK CS, et. al. Graphical evaluation of blood to brain transfer constants from multiple time uptake data. J. Cerebral Blood Flow and Metab. 1983; 3(1).
[16] DÍAZ MORENO RM. Cuantificación del Flujo Sanguíneo cerebral en unidades absolutas mediante tomografía por emisión de fotones (SPECT). Experiencias iniciales. Tesis presentada en opción al título de Licenciado en Física Nuclear. Instituto Superior de Ciencias y Tecnologías Nucleares. La Habana, 2003.
[17] MURASE K, et. al. Reproducibility of the brain perfusion index for measuring cerebral blood flow using technetium 99m compounds. Eur J Nucl Med. 2001; 28.
[18] VAN LAERE K, et. al. Variability Study of a non invasive approach to the absolute quantification of cerebral blood flow with Tc-99m-ECD using aortic activity as the arterial input estimate. Nucl Med communications 1999; 20.
[19] TAKASAWA M, et. al. Automatic determination of Brain Perfusion Index for measurement of cerebral blood flow using spectral analysis and HMPAO. Eur J Nucl Med. 2002; 29.
[20] TAKASAWA M, et. al. Interobserver variability of cerebral blood flow measurements obtained using spectral analysis and technetium-99m labeled compounds. Ann Nucl Med. 2003; 17(3).
[21] VAN LAERE K, et. al. Non-invasive methods for absolute cerebral blood flow measurement using 99mTc-ECD: a study in healthy volunteers. Eur J Nucl Med. 2001; 28(7).
[22] CUNNINGHAM VJ, JONES T. Spectral analysis of dynamic PET studies. J. Cereb Blood Flow Metab. 1993; 13: 15–23.
[23] CATAFAU A. Brain SPECT in Clinical Practice. Part I: Perfusion. J Nucl Med. 42(2).
[24] OGASAWARA K, et. al. Cerebrovascular Reactivity to Acetazolamide and Outcome in Patients With Symptomatic Internal Carotid or Middle Cerebral Artery Occlusion. A Xenon-133 Single-Photon Emission Computed Tomography Study. Stroke. 2002; 33.
[25]TAKEUCHI R, et. al. Noninvasive quantitative measurements of regional cerebral blood flow using flow using technetium-99m-L, L-ECD SPECT activated with acetazolamide: quantification, analysis by equal-volume-split 99mTc-ECD consecutive SPECT method. J. Cereb Blood Flow Metab. 1997; 17.
[26] NISHIZAWA, S. et al., Regional dynamics of N-isopropyl-(123I)p- iodoamphetamine in human brain. J Nucl Med. 1989; 30(2): 150-156.
[27] KENTARO I, et. al. Database of normal human cerebral blood flow measured by SPECT: II. Quantification of I123-IMP studies with ARG method and effects of partial volume correction. Ann Nucl Med. 2006; 20(2).