Phosphorus isotopic evaluation of a Red Ferralitic soil under various fertilization systems

Main Article Content

Ricardo M. Rodríguez Guzmán

Abstract

Soil samples from a red ferralitic soil from the “Juan Tomás Roig” Experimental Station, belonging to Ciego de Avila University were analyzed under two crop rotations and four phosphoric fertilization systems. The objective was to evaluate, through the 32P isotopic dilution, phosphor (P) static parameters in a soil that has received P fertilizer through two placement methods (banding and broadcasting) for several years. A radiochemical laboratory method using a 32P free-carrier solution as a tracer based on isotopic exchange between solid phase and soil solution phosphate ions was used. Soil samples were analyzed at the CEA Department laboratories, in Francia. Quantity (E1), as isotopic exchangeable P at one minute, intensity (Cp), as P concentration in soil solution, and capacity, as (E1/Cp), factors were determined. 32P isotopic evaluation indicated that the soil needs high banding P application to reach adequate E1 and Cp values for crop nutrition. A cumulative P effect in the soil through banding fertilization after three crop rotation cycles was obtained, which allows to increase plant P availability. The capacity factor was very high in all soil samples, indicating that soil maintains a P reserve that is difficult to exchange with the phosphor present in the soil solution.

Article Details

How to Cite
Rodríguez Guzmán, R. M. (1). Phosphorus isotopic evaluation of a Red Ferralitic soil under various fertilization systems. Nucleus, (61), 6-10. Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/11
Section
Ciencias Nucleares

References

[1] SHARPLEY A, DANIELS M, VANDEVENDER K & SLATON N. Soil phosphorus: management and recommendations. Fact Sheet Agriculture 1029. University of Arkansas, 2011.
[2] SHEN J, YUAN L, ZHANG J, et. al. Phosphorus dynamics: from soil to plant. Plant Physiology. 2011; 156(3): 997-1005.
[3] BIBISO M, TADDESSE AM , GEBREKIDAN H & MELESE A. Evaluation of universal extractants for determination of some macronutrients from soil. Communications in Soil Science and Plant Analysis. 2015; 46(19): 2425-2448.
[4] YANG X & POST WM. Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences. 2011; 8(10): 2907-2916.
[5] GARCÍA A, HERNÁNDEZ G, NUVIOLA A, et. al. Fuentes fosfóricas de diferente solubilidad para frijol común evaluadas por método isotópico. Agronomía Mesoamericana. 2005; 16(2): 161-170.
[6] FARDEAU JC. Le phosphore assimilable des sols: sa représentation par un modèle fonctionnel à plusieurs compartiments. Agronomie. 1993; 13(4): 317-331. http://dx.doi.org/10.1051/agro:19930409
[7] FARDEAU JC. Dynamics of phosphate in soils. An isotopic outlook. Fertilizer Researc. 1995; 45(2): 91-100. doi:10.1007/BF00790658
[8] HERNÁNDEZ A, PÉREZ J, BOSCH D, et. al. Nueva versión de clasificación genética de los suelos de Cuba. La Habana: Instituto de Suelos, 1999. 64 p.
[9] Norma Cubana. Calidad del suelo. Determinación del pH y la conductividad eléctrica en el extracto de saturación. NC. 32. 2009.
[10] Norma Cubana. Calidad del Suelo. Determinación de los componentes orgánicos. NC. 1043. 2014.
[11] Norma Cubana. Calidad del Suelo. Determinación de las formas móviles del fósforo y el potasio. NC. 52. 1999.
[12] JOHN MK. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci. Soc. Am. J. 1970; 109(4): 214-220.
[13] RANDRIAMANANTSOA L, MOREL C, RABEHARISOA L, et. al. Can the isotopic exchange kinetic method be used in soils with a very low water extractable phosphate content and a high sorbing capacity for phosphate ions?. Geoderma. 2013; 200-201: 120-129.
[14] VU DT, ARMSTRONG RD, SALE PWG & TANG C. Phosphorus availability for three crop species as a function of soil type and fertilizer history. Plant and Soil. 2010; 337(1): 497-510.
[15] GARCÍA A. Evaluation of selected soil and nutrient management practices to improve the fertility and productivity of acid soils of Cuba. Report of the Third Research Co-ordination Meeting. IAEA Co-ordinated Research Project. Ouagadougo, Burkina Faso, August 2003.
[16] MEJÍAS JH, ALFARO M, HARSH J. Approaching environmental phosphorus limits on a volcanic soil of Southern Chile. Geoderma. 2013; 207-208: 49-57.
[17] ZIADI N, WHALEN JK, MESSIGA AJ & MOREL C. Assessment and modeling of soil available phosphorus in sustainable cropping systems. In: Advances in Agronomy. 1st Edition. Academic Press, 2013. Vol. 122. Chapter 2. pp. 85-126.
[18] FROSSARD E, FARDEAU JC, BROSSARD M & MOREL JL. Soil isotopically exchangeable phosphorus: A comparison between E and L values. Soil Sci. Soc. Am. J. 1994; 58: 846?851.
[19] IAEA. Use of isotope and radiation methods in soil and water management and crop nutrition. IAEA-TCS-14. Vienna: OIEA, 2001. 247 p.
[20] BARBER SA. Soil nutrient bioavailability: a mechanistic approach. New York: Wiley Interscience and Sons, 1995. 414 p.
[21] DOAN C, DANG N, TAM H, DAC L & THU L. Studies of the dynamics of soil phosphorus and agronomic effectiveness of phosphate fertilizers in particular PR in three main soil types of South Viet Nam. 2nd Res. Coord. Meeting FAO/IAEA CRP. Montpellier, France. 1995.
[22] RODRÍGUEZ R, HERRERA J, GARCÍA A & NUVIOLA A. Enhancement of the agronomic effectiveness of phosphate rock in a Ferralsol from Cuba. IAEA-TECDOC-1272. Vienna: IAEA, 2002. p. 107-116.
[23] FARDEAU JC, MOREL C & BONIFACE R. Cinétiques de transfert des ions phosphate du sol vers la solution du sol: paramètres caractéristiques. Agronomie. 1991; 11(9): 787-797. doi: 10.1051/agro:19910909.
[24] PERALTA H. Sistemas de fertilización fosfórica de la papa en una secuencia de cultivos papa-maíz en un suelo Ferralítico Rojo compactado [tesis en opción al grado de Dr. en Ciencias Agrícolas]. La Habana: INCA, 1991.
[25] GHOSAL P, CHAKRABORTY T & BANIK P. Phosphorus fixing capacity of the Oxic Rhodustalf— alfisol soil in the Chotanagpur plateau region of Eastern India. Agricultural Sciences. 2011; 2(4): 487-490. doi:10.4236/as.2011.24062.
[26] BEEGLE DB & DURST PT. Managing Phosphorus for Crop Production. Agronomy Facts 13. CAT UC055. Penn State University, 2011.
[27] LAMERS JPA, BRUENTRUP M & BUERKERT A. Financial performance of fertilisation strategies for sustainable soil fertility management in Sudano-Sahelian West Africa. 1: profitability of annual fertilisation strategies. Nutr. Cycling in Agroec. 2015; 102(1): 137-148.