Phosphorus isotopic evaluation of a Red Ferralitic soil under various fertilization systems
Main Article Content
Abstract
Soil samples from a red ferralitic soil from the “Juan Tomás Roig” Experimental Station, belonging to Ciego de Avila University were analyzed under two crop rotations and four phosphoric fertilization systems. The objective was to evaluate, through the 32P isotopic dilution, phosphor (P) static parameters in a soil that has received P fertilizer through two placement methods (banding and broadcasting) for several years. A radiochemical laboratory method using a 32P free-carrier solution as a tracer based on isotopic exchange between solid phase and soil solution phosphate ions was used. Soil samples were analyzed at the CEA Department laboratories, in Francia. Quantity (E1), as isotopic exchangeable P at one minute, intensity (Cp), as P concentration in soil solution, and capacity, as (E1/Cp), factors were determined. 32P isotopic evaluation indicated that the soil needs high banding P application to reach adequate E1 and Cp values for crop nutrition. A cumulative P effect in the soil through banding fertilization after three crop rotation cycles was obtained, which allows to increase plant P availability. The capacity factor was very high in all soil samples, indicating that soil maintains a P reserve that is difficult to exchange with the phosphor present in the soil solution.
Article Details
How to Cite
Rodríguez Guzmán, R. M. (1). Phosphorus isotopic evaluation of a Red Ferralitic soil under various fertilization systems. Nucleus, (61), 6-10. Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/11
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
[1] SHARPLEY A, DANIELS M, VANDEVENDER K & SLATON N. Soil phosphorus: management and recommendations. Fact Sheet Agriculture 1029. University of Arkansas, 2011.
[2] SHEN J, YUAN L, ZHANG J, et. al. Phosphorus dynamics: from soil to plant. Plant Physiology. 2011; 156(3): 997-1005.
[3] BIBISO M, TADDESSE AM , GEBREKIDAN H & MELESE A. Evaluation of universal extractants for determination of some macronutrients from soil. Communications in Soil Science and Plant Analysis. 2015; 46(19): 2425-2448.
[4] YANG X & POST WM. Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences. 2011; 8(10): 2907-2916.
[5] GARCÍA A, HERNÁNDEZ G, NUVIOLA A, et. al. Fuentes fosfóricas de diferente solubilidad para frijol común evaluadas por método isotópico. Agronomía Mesoamericana. 2005; 16(2): 161-170.
[6] FARDEAU JC. Le phosphore assimilable des sols: sa représentation par un modèle fonctionnel à plusieurs compartiments. Agronomie. 1993; 13(4): 317-331. http://dx.doi.org/10.1051/agro:19930409
[7] FARDEAU JC. Dynamics of phosphate in soils. An isotopic outlook. Fertilizer Researc. 1995; 45(2): 91-100. doi:10.1007/BF00790658
[8] HERNÁNDEZ A, PÉREZ J, BOSCH D, et. al. Nueva versión de clasificación genética de los suelos de Cuba. La Habana: Instituto de Suelos, 1999. 64 p.
[9] Norma Cubana. Calidad del suelo. Determinación del pH y la conductividad eléctrica en el extracto de saturación. NC. 32. 2009.
[10] Norma Cubana. Calidad del Suelo. Determinación de los componentes orgánicos. NC. 1043. 2014.
[11] Norma Cubana. Calidad del Suelo. Determinación de las formas móviles del fósforo y el potasio. NC. 52. 1999.
[12] JOHN MK. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci. Soc. Am. J. 1970; 109(4): 214-220.
[13] RANDRIAMANANTSOA L, MOREL C, RABEHARISOA L, et. al. Can the isotopic exchange kinetic method be used in soils with a very low water extractable phosphate content and a high sorbing capacity for phosphate ions?. Geoderma. 2013; 200-201: 120-129.
[14] VU DT, ARMSTRONG RD, SALE PWG & TANG C. Phosphorus availability for three crop species as a function of soil type and fertilizer history. Plant and Soil. 2010; 337(1): 497-510.
[15] GARCÍA A. Evaluation of selected soil and nutrient management practices to improve the fertility and productivity of acid soils of Cuba. Report of the Third Research Co-ordination Meeting. IAEA Co-ordinated Research Project. Ouagadougo, Burkina Faso, August 2003.
[16] MEJÍAS JH, ALFARO M, HARSH J. Approaching environmental phosphorus limits on a volcanic soil of Southern Chile. Geoderma. 2013; 207-208: 49-57.
[17] ZIADI N, WHALEN JK, MESSIGA AJ & MOREL C. Assessment and modeling of soil available phosphorus in sustainable cropping systems. In: Advances in Agronomy. 1st Edition. Academic Press, 2013. Vol. 122. Chapter 2. pp. 85-126.
[18] FROSSARD E, FARDEAU JC, BROSSARD M & MOREL JL. Soil isotopically exchangeable phosphorus: A comparison between E and L values. Soil Sci. Soc. Am. J. 1994; 58: 846?851.
[19] IAEA. Use of isotope and radiation methods in soil and water management and crop nutrition. IAEA-TCS-14. Vienna: OIEA, 2001. 247 p.
[20] BARBER SA. Soil nutrient bioavailability: a mechanistic approach. New York: Wiley Interscience and Sons, 1995. 414 p.
[21] DOAN C, DANG N, TAM H, DAC L & THU L. Studies of the dynamics of soil phosphorus and agronomic effectiveness of phosphate fertilizers in particular PR in three main soil types of South Viet Nam. 2nd Res. Coord. Meeting FAO/IAEA CRP. Montpellier, France. 1995.
[22] RODRÍGUEZ R, HERRERA J, GARCÍA A & NUVIOLA A. Enhancement of the agronomic effectiveness of phosphate rock in a Ferralsol from Cuba. IAEA-TECDOC-1272. Vienna: IAEA, 2002. p. 107-116.
[23] FARDEAU JC, MOREL C & BONIFACE R. Cinétiques de transfert des ions phosphate du sol vers la solution du sol: paramètres caractéristiques. Agronomie. 1991; 11(9): 787-797. doi: 10.1051/agro:19910909.
[24] PERALTA H. Sistemas de fertilización fosfórica de la papa en una secuencia de cultivos papa-maíz en un suelo Ferralítico Rojo compactado [tesis en opción al grado de Dr. en Ciencias Agrícolas]. La Habana: INCA, 1991.
[25] GHOSAL P, CHAKRABORTY T & BANIK P. Phosphorus fixing capacity of the Oxic Rhodustalf— alfisol soil in the Chotanagpur plateau region of Eastern India. Agricultural Sciences. 2011; 2(4): 487-490. doi:10.4236/as.2011.24062.
[26] BEEGLE DB & DURST PT. Managing Phosphorus for Crop Production. Agronomy Facts 13. CAT UC055. Penn State University, 2011.
[27] LAMERS JPA, BRUENTRUP M & BUERKERT A. Financial performance of fertilisation strategies for sustainable soil fertility management in Sudano-Sahelian West Africa. 1: profitability of annual fertilisation strategies. Nutr. Cycling in Agroec. 2015; 102(1): 137-148.
[2] SHEN J, YUAN L, ZHANG J, et. al. Phosphorus dynamics: from soil to plant. Plant Physiology. 2011; 156(3): 997-1005.
[3] BIBISO M, TADDESSE AM , GEBREKIDAN H & MELESE A. Evaluation of universal extractants for determination of some macronutrients from soil. Communications in Soil Science and Plant Analysis. 2015; 46(19): 2425-2448.
[4] YANG X & POST WM. Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences. 2011; 8(10): 2907-2916.
[5] GARCÍA A, HERNÁNDEZ G, NUVIOLA A, et. al. Fuentes fosfóricas de diferente solubilidad para frijol común evaluadas por método isotópico. Agronomía Mesoamericana. 2005; 16(2): 161-170.
[6] FARDEAU JC. Le phosphore assimilable des sols: sa représentation par un modèle fonctionnel à plusieurs compartiments. Agronomie. 1993; 13(4): 317-331. http://dx.doi.org/10.1051/agro:19930409
[7] FARDEAU JC. Dynamics of phosphate in soils. An isotopic outlook. Fertilizer Researc. 1995; 45(2): 91-100. doi:10.1007/BF00790658
[8] HERNÁNDEZ A, PÉREZ J, BOSCH D, et. al. Nueva versión de clasificación genética de los suelos de Cuba. La Habana: Instituto de Suelos, 1999. 64 p.
[9] Norma Cubana. Calidad del suelo. Determinación del pH y la conductividad eléctrica en el extracto de saturación. NC. 32. 2009.
[10] Norma Cubana. Calidad del Suelo. Determinación de los componentes orgánicos. NC. 1043. 2014.
[11] Norma Cubana. Calidad del Suelo. Determinación de las formas móviles del fósforo y el potasio. NC. 52. 1999.
[12] JOHN MK. Colorimetric determination of phosphorus in soil and plant materials with ascorbic acid. Soil Sci. Soc. Am. J. 1970; 109(4): 214-220.
[13] RANDRIAMANANTSOA L, MOREL C, RABEHARISOA L, et. al. Can the isotopic exchange kinetic method be used in soils with a very low water extractable phosphate content and a high sorbing capacity for phosphate ions?. Geoderma. 2013; 200-201: 120-129.
[14] VU DT, ARMSTRONG RD, SALE PWG & TANG C. Phosphorus availability for three crop species as a function of soil type and fertilizer history. Plant and Soil. 2010; 337(1): 497-510.
[15] GARCÍA A. Evaluation of selected soil and nutrient management practices to improve the fertility and productivity of acid soils of Cuba. Report of the Third Research Co-ordination Meeting. IAEA Co-ordinated Research Project. Ouagadougo, Burkina Faso, August 2003.
[16] MEJÍAS JH, ALFARO M, HARSH J. Approaching environmental phosphorus limits on a volcanic soil of Southern Chile. Geoderma. 2013; 207-208: 49-57.
[17] ZIADI N, WHALEN JK, MESSIGA AJ & MOREL C. Assessment and modeling of soil available phosphorus in sustainable cropping systems. In: Advances in Agronomy. 1st Edition. Academic Press, 2013. Vol. 122. Chapter 2. pp. 85-126.
[18] FROSSARD E, FARDEAU JC, BROSSARD M & MOREL JL. Soil isotopically exchangeable phosphorus: A comparison between E and L values. Soil Sci. Soc. Am. J. 1994; 58: 846?851.
[19] IAEA. Use of isotope and radiation methods in soil and water management and crop nutrition. IAEA-TCS-14. Vienna: OIEA, 2001. 247 p.
[20] BARBER SA. Soil nutrient bioavailability: a mechanistic approach. New York: Wiley Interscience and Sons, 1995. 414 p.
[21] DOAN C, DANG N, TAM H, DAC L & THU L. Studies of the dynamics of soil phosphorus and agronomic effectiveness of phosphate fertilizers in particular PR in three main soil types of South Viet Nam. 2nd Res. Coord. Meeting FAO/IAEA CRP. Montpellier, France. 1995.
[22] RODRÍGUEZ R, HERRERA J, GARCÍA A & NUVIOLA A. Enhancement of the agronomic effectiveness of phosphate rock in a Ferralsol from Cuba. IAEA-TECDOC-1272. Vienna: IAEA, 2002. p. 107-116.
[23] FARDEAU JC, MOREL C & BONIFACE R. Cinétiques de transfert des ions phosphate du sol vers la solution du sol: paramètres caractéristiques. Agronomie. 1991; 11(9): 787-797. doi: 10.1051/agro:19910909.
[24] PERALTA H. Sistemas de fertilización fosfórica de la papa en una secuencia de cultivos papa-maíz en un suelo Ferralítico Rojo compactado [tesis en opción al grado de Dr. en Ciencias Agrícolas]. La Habana: INCA, 1991.
[25] GHOSAL P, CHAKRABORTY T & BANIK P. Phosphorus fixing capacity of the Oxic Rhodustalf— alfisol soil in the Chotanagpur plateau region of Eastern India. Agricultural Sciences. 2011; 2(4): 487-490. doi:10.4236/as.2011.24062.
[26] BEEGLE DB & DURST PT. Managing Phosphorus for Crop Production. Agronomy Facts 13. CAT UC055. Penn State University, 2011.
[27] LAMERS JPA, BRUENTRUP M & BUERKERT A. Financial performance of fertilisation strategies for sustainable soil fertility management in Sudano-Sahelian West Africa. 1: profitability of annual fertilisation strategies. Nutr. Cycling in Agroec. 2015; 102(1): 137-148.