Evaluación por Monte Carlo de los métodos de corrección de dispersión con <sup>131</sup>I empleando colimador pinhole
Contenido principal del artículo
Resumen
La dispersión es un efecto significativo a corregir para la cuantificación de actividad. El objetivo del trabajo fue estimar la influencia de la dispersión en estudios de tiroides con 131I y colimador pinhole (5 mm) empleando el método de Monte Carlo (MC) y evaluar la eficacia de los métodos de corrección de múltiples ventanas en este tipo de estudios. Para simular la geometría de la cámara gamma y el estudio de tiroides se utilizó el código de Monte Carlo GAMOS. Para validar la geometría del cabezal se simuló y verificó experimentalmente un maniquí de tiroides, comparando la sensibilidad estimada con la medida, experimentalmente en agua y aire. Para evaluar la influencia de la dispersión a escala clínica se simularon diferentes tamaños de tiroides y profundidades del tejido, se estimaron y compararon los resultados de los métodos de Triple Ventana, Doble Ventana y Doble Ventana Reducida. Se calcularon las diferencias relativas al valor de referencia obtenido por MC. La geometría modelada fue verificada y validada. La contribución de la dispersión a la imagen fue significativa y se ubicóentre el 27 y 40 % a escala no clínica. Las discrepancias de los resultados de los diferentes métodos de corrección de dispersión a escala clínica fueron significativas (p>95 %) y estuvieron en el rango entre 9 y 86 %. El método de mejores resultados fue el de la Doble Ventana Reducida (15 %) que mostró discrepancias entre 9 y 16 %. Se concluyó que el método de la Doble Ventana Reducida (15 %) fue el más eficiente de los estudiados.
Detalles del artículo
Cómo citar
López Díaz, A., Rodríguez Pérez, S., Díaz García, A., Palau San Pedro, A., & Martín Escuela, J. M. (1). Evaluación por Monte Carlo de los métodos de corrección de dispersión con <sup>131</sup>I empleando colimador pinhole. Nucleus, (61), 11-15. Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/12
Número
Sección
Ciencias Nucleares
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
Citas
[1] STOKKEL MP, HANDKIEWIC D, LASSMANN M, et. al. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010; 37(11): 2218-2228.
[2] MERRILL S, HOROWITZ J, TRAINO AC, et. al. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves’ disease. Phys Med Biol. 2011; 56(3): 557-71.
[3] DELOAR HM, WATABE H, AOI T & IIDA H. Evaluation of penetration and scattering components in conventional pinhole SPECT: phantom studies using Monte Carlo simulation. Phys. Med. Biol. 2003; 48(8): 995-1008.
[4] SMITH MF & JASZCZAK J. The effect of gamma ray penetration on angle-dependent sensitivity for pinhole collimation in nuclear medicine. Med. Phys. 1997; 24(11): 1701-9.
[5] ZAIDI H. Quantitative analysis in nuclear medicine imaging. Springer, 2006.
[6] LJUNGBERG M AND STRAND S. Scatter and attenuation corrections in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med. 1990; 31(9): 1560-1567.
[7] ESPAÑA S, HERRAIZ JL, VICENTE E, et. al. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation. Phys Med Biol. 2009; 54(6): 1723-1742.
[8] ALLISON J. Geant4 developments and applications. IEEE Transactions on Nuclear Science. 2006; 53(1): 270 -278.
[9] AMIDE: Amide's a Medical Imaging Data Examiner. AMIDE.exe 0.9.2 [software online]. Disponible en: http://amide.sourceforge.net [May 2013].
[10] GAMOS 2011. User’s Guide [guide online]. Disponible en: http://fismed.ciemat.es/GAMOS/gamos_userguide.php. [January 2013].
[11] NORRGREN K, SVEGBORN S, AREBERG J & MATTSSON S. Accuracy of the quantification of organ activity from planar gamma camera images. Cancer Biother Radiopharm. 2003; 1(18): 125-131.
[12] DEWARAJA YK, LJUNGBERG M, GREEN AJ, et. al. MIRD Pamphlet No. 24: guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med. 2013; 54(12): 2182-2188.
[13] DEWARAJA YK, FREY EC, SGOUROS G, et. al. MIRD Pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012; 53(8): 1310-1325.
[14] STABIN M. Uncertainties in internal dose calculations for radiopharmaceuticals. J Nucl Med. 2008; 49(5): 853-860.
[2] MERRILL S, HOROWITZ J, TRAINO AC, et. al. Accuracy and optimal timing of activity measurements in estimating the absorbed dose of radioiodine in the treatment of Graves’ disease. Phys Med Biol. 2011; 56(3): 557-71.
[3] DELOAR HM, WATABE H, AOI T & IIDA H. Evaluation of penetration and scattering components in conventional pinhole SPECT: phantom studies using Monte Carlo simulation. Phys. Med. Biol. 2003; 48(8): 995-1008.
[4] SMITH MF & JASZCZAK J. The effect of gamma ray penetration on angle-dependent sensitivity for pinhole collimation in nuclear medicine. Med. Phys. 1997; 24(11): 1701-9.
[5] ZAIDI H. Quantitative analysis in nuclear medicine imaging. Springer, 2006.
[6] LJUNGBERG M AND STRAND S. Scatter and attenuation corrections in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med. 1990; 31(9): 1560-1567.
[7] ESPAÑA S, HERRAIZ JL, VICENTE E, et. al. PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation. Phys Med Biol. 2009; 54(6): 1723-1742.
[8] ALLISON J. Geant4 developments and applications. IEEE Transactions on Nuclear Science. 2006; 53(1): 270 -278.
[9] AMIDE: Amide's a Medical Imaging Data Examiner. AMIDE.exe 0.9.2 [software online]. Disponible en: http://amide.sourceforge.net [May 2013].
[10] GAMOS 2011. User’s Guide [guide online]. Disponible en: http://fismed.ciemat.es/GAMOS/gamos_userguide.php. [January 2013].
[11] NORRGREN K, SVEGBORN S, AREBERG J & MATTSSON S. Accuracy of the quantification of organ activity from planar gamma camera images. Cancer Biother Radiopharm. 2003; 1(18): 125-131.
[12] DEWARAJA YK, LJUNGBERG M, GREEN AJ, et. al. MIRD Pamphlet No. 24: guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med. 2013; 54(12): 2182-2188.
[13] DEWARAJA YK, FREY EC, SGOUROS G, et. al. MIRD Pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012; 53(8): 1310-1325.
[14] STABIN M. Uncertainties in internal dose calculations for radiopharmaceuticals. J Nucl Med. 2008; 49(5): 853-860.