Sistema Pet-compton. Evaluación comparativa con el sistema PET usando la simulación por Monte Carlo

Angelina Díaz García, Juan A. Rubio Rodríguez, José M. Pérez Morales, Pedro Arce Dubois, Oscar Vela Morales, Eduardo Arista Romeu

Resumen

En la actualidad la tomografía por emisión de positrones (PET en pequeños animales ha alcanzado valores de resolución espacial cercanos a mm y en estos momentos se encuentran bajo estudio diferentes aproximaciones para mejorar dicha resolución espacial. Una de ellas combina la tecnología PET con las cámaras Compton. Este trabajo presenta la idea del denominado Sistema "PET-Compton" e incluye una evaluación comparativa de la resolución espacial y la eficiencia global de los sistemas PET y PET-Compton por medio de la simulación por Monte Carlo, utilizando el código Geant4. La simulación fue realizada en un sistema PET-Compton compuesto por detectores centellantes de LYSO-LUYAP de un específico y pequeño escáner PET denominado "Clear-PET" y para detectores Compton en base al semiconductor CdZnTe. Se estudiaron bajo las condiciones de simulación un grupo de radionúclidos que emiten un positrón () y un cuanto gamma casi simultáneamente y cumplen ciertos criterios de selección para su posible utilización en aplicaciones médicas y biomédicas de los sistemas PET-Compton. Por medio de la reconstrucción analítica, empleando el método de reordenamiento de cortes simples (SSRB) se obtuvo una resolución espacial superior para el sistema PET-Compton en todos los radionúclidos de prueba, que alcanzó valores por debajo del milímetro para la fuente de . Sin embargo, el análisis realizado por medio de la simulación demostró valores limitados de eficiencia global para el sistema PET-Compton (del orden de ) en contraposición a los valores cercanos a que se alcanzaron para el sistema PET.

Palabras clave

efecto compton, simulación computarizada, método de Monte Carlo, tomografía computarizada con positrón, resolución espacial, código G

Texto completo:

PDF Epub HTML

Referencias

HART H. High-Resolution Radioisotopic Imaging System. Patent No. US 4833327. 1989.

BAILEY DL, TOWNSEND DW, VALK PE, MAISEY MN. Positron emission tomography: basic sciences. London: Springer-Verlag, 2005.

SINGH M. An electronically collimates gamma camera for single photon emission computed tomography. Part I: Theoretical considerations and design criteria. Med. Phys. 1983; 10(4): 421-427.

GRIGNON C, et. al. Nuclear Medical Imaging using coincidences from 44Sc radio-nuclide with liquid xenon as detetcion medium. Nucl. Instr. and Meth. in Phys. Res. 2007; A571: 142-145.

IWATA R, IWAI K, IDO T, KIMURA S. Preparation of no-carrier-added 48 V(IV) and 48V(V) for biological tracer use. J Radioanal. Nucl Chem. 1989; 134(2): 303-309.

DAHL LK, SMILAY MG, SILVER L, SPRARAGEN S. Evidence for a Prolonged Biological Half-Life of Na22 in Patients with Hypertension. Circ. Res. 1962; 10: 313-320.

ARCE P, RATO P, LAGARES JI. GAMOS an easy and flexible framework for GEANT4 simulations. 2008 Nuclear Science Symposium. Medical Imaging Conference and 16th Room Temperature Semiconductor Detector Workshop. Dresde, Germany, 19-25 October 2008.

FIRESTONE RB, EKSTROM L. Table of radioactive isotopes LBNL Isotopes Project—LUNDS Universitet. Version 2.1 January 2004. http://ie.lbl.gov/toi/.

SEMPERE P, ROLDAN E, CHEREUL O, et. al. Raytest ClearPETTM, a new generation of small animal PET scanner. Nucl. Instr.and Meth. 2007; A571: 498-501.

LOENING A, GAMBHIR S. AMIDE: A Free Software Tool for Multimodality Medical Image Analysis. Mol. Imaging. 2003; 2(3): 131-137.