Imagen molecular del microentorno del cáncer
Resumen
Palabras clave
Referencias
JOYCE JA & POLLARD JW. Micro environmental regulation of metastasis. Nature Reviews Cancer. 2009; 9(4): 239-252.
BALKWILL F & MANTOVANI A. Inflammation and cancer: back to Virchow? Lancet. 2001; 357(9255): 539-545.
GOUBRAN HA, KOTB RR, STAKIW J, et. al. Regulation of tumour growth and metastasis: the role of tumour microenvironment. Cancer Growth and Metastasis. 2014; 7: 9-18.
MANTOVANI A, ALLAVENA P, SICA A, BALKWILL F. Cancer related-related inflammation. Natue. 2008; 454(7203): 436-444.
ERLER JT, BENNEWITH KL, COX TR, et. al. Hypoxia-induced lysyl oxidise is a critical mediator of bone marrow cell recruitment to form the pre-metastatic niche. Cancer Cell. 2009; 15 (1): 35-44.
ZENG J, XIE K, WU H, et. al. Identification and functional study of cytokines and chemokines involved in tumourgenesis. Combinatorial Chemistry and High Throughput Screening. 2012; 15(3): 276-85.
FOLKMAN J. Role of angiogenesis in tumour growth and metastasis. Semin Oncol. 2002; 29 (6 Suppl 16): 15-8.
MAERTENS L, ERPICUM C, DETRY B, et. al. Bone marrow-derived mesenchymal stem cells drive lymph angiogenesis. PloS One. 2014; 9(9): e106976.
OLSSON AK, DIMBERG A, KREUGER J, CLAESSON-WELSH L. VEGF receptor signalling- in control of vascular function. Nat Rev. Mol Cell Biol. 2006; 7(5): 359-371.
MARU Y, YAMAGUCHI S, SHIBUYA M. Flt-1, a receptor for vascular endothelial growth factor, has trasforming and morphogenic potentials. Oncogene. 1998; 16(20): 2585-95.
GOEL HL, MERCURIO AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013; 13(12): 871-82.
HOOD JD, CHERESH DA. Role of integrins in cell invasion and migration. Nat Rev Cancer. 2002; 2(2): 91-100.
BAUME DM, ROBERTSON MJ, LEVINE H, et. al. Differential responses to interleukin 2 defines functionally distinct subsets of human natural killer cells. Eur J Immunol. 1992; 22(1): 1-6.
PATEL KN, SHAHA AR. Poorly differentiated and anaplastic thyroid cancer. Cancer Control. 2006; 13(2): 119-28.
CREACH KM, NUSSENBAUM B, SIEGEL BA, GRIGSBY PW. Thyroid carcinoma uptake of 18F- fluoodeoxyglucose inpatients with elevated serum thyroglobulin and negative 131I scintigraphy. Am J Otolaryngol. 2013 Jan-Feb; 34(1): 51-6.
MIDDENDORP M, SELKINSKI I, HAPPEL C, et. al. Comparison of positron emission tomography with [(18)F]FDG and [(68)Ga]DOTATOC in recurrent differentiated thyroid cancer: preliminary data. Q J Nucl Med Mol Imaging. 2010; 54(1): 76-83.
PALMEDO H, BUCERIUS J, JOE A, et. al. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J. Nucl Med. 2006; 47(4): 616-624.
SHAMMAS A, DEGIRMENCY B, MOUNTZ JM, et. al. 18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J. Nucl Med. 2007; 48(2): 221-226.
LAURI C, DI TRAGLIA S, GALLI F, PIZZICHINI P, SIGNORE A. Current status of PET imaging of differentiated thyroid cancer with second generation radiopharmaceuticals. Q J Nucl Med Mol Ima-ging. 2015; 59(1): 105-15.
DURANTE C, PUXEDDU E, FERRETTI E, et. al. BRAF mutations in papillary thyroid carcinoma inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab. 2007; 92(7): 2840-3.
CORSETTI F, CHIANELLI M, CORNELISSEN B, et. al. Radioiodinated recombinant human TSH: a novel radiopharmaceutical for thyroid cancer metastases detection. Cancer Biother Radiopharm. 2004; 19(1): 57-63.
SZKUDLINSKI MW, GROSSMANN M, LEITOLF H, WEINTRAUB BD. Human thyroid-stimulating hormone: structure-function analysis. Methods. 2000; 21(1): 67-81.
GALLI F, MANNI I, PIAGGIO G, et. al. (99m)Tc-labeled-rhTSH analogue (TR1401) for imaging poorly differentiated metastatic thyroid cancer. Thyroid. 2014; 24(8): 1297-308.
PHAN HT, JAGER PL, PLUKKER JT, et. al. Comparison of 11C-methionine PET and 18F-fluoodeoxyglucose PET in differentiated thyroid cancer. Nucl Med Commun. 2008; 29(8): 711-6.
PERRI F, PEZZULLO L, CHIOFALO MG, et. al. Targeted therapy: a new hope for thyroid carcinomas. Crit Rev Oncol Hematol. 2014; 94(1): 55-63.
DIJKGRAAF I, BOERMAN OC. Molecular imaging of angiogenesis with SPECT. Eur J Nucl Med Mol Imaging. 2010; 37(Suppl 1): S104-13.
YOSHIMOTO M, KINUYA S, KAWASHIMA A, et. al. Radioiodinated VEGF to image tumour angiogenesis in a LS180 tumour xenograft model. Nucl Med Biol. 2006; 33(8): 963-969.
LI S, PECK-RADOSAVLJEVIC M, KIENAST O, et. al. Imaging gastrointestinal tumours using vascular endothelial growth factor-165 (VEGF165) receptor scintigraphy. .Ann Oncol. 2003; 14(8): 1274-7.
BLANKENBERG FG, BACKER MV, LEVASHOVA Z, et. al. In vivo tumour angiogenesis imaging with site-specific labeled (99m)Tc-HYNIC-VEGF. Eur J Nucl Med Mol Imaging. 2006; 33(7): 841-8.
CHAN C, SANDHU J, GUHA A, et. al. A human transferrin-vascular endothelial growth factor (hnTf-VEGF) fusion protein containing an integrated binding site for (111)In for imaging tumour angiogenesis. J Nucl Med. 2005; 46(10): 1745-52.
LI S, PECK-RADOSAVLJEVIC M, KIENAST O, et. al. Iodine-123-vascular endothelial growth factor-165 (123I-VEGF165). Biodistribution, safety and radiation dosimetry in patients with pancreatic carcinoma. Q J Nucl Med Mol Imaging. 2004; 48(3): 198-206.
LU E, WAGNER WR, SCHELLENBERGER U, et. al. Targeted in vivo labelling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation. 2003; 108(1): 97-103.
HAUBNER R, BEER AJ, WANG H, CHEN X. Positron emission tomography tracers for imaging angiogenesis. Eur J Nucl Med Mol Imaging. 2010; (37 Suppl 1): S86-103. [34] CAI W, CHEN K, MOHAMEDALI KA, et. al. PET of vascular endothelial growth factor receptor expression. J Nucl Med. 2006; 47(12): 2048-56.
NAGENGAST WB, HOOGE MN, van STRATEN EM, et. al. VEGF-SPECT with ¹¹¹In-bevacizumab in stage III/IV melanoma patients. Eur J Cancer. 2011; 47(10): 1595-602.
HOSSEINIMEHR SJ, ORLOVA A, TOLMACHEV V. Preparation and in vitro evaluation of 111In-CHX-A”-DTPA-labeled anti-VEGF monoclonal antibody bevacizumab. Hum Antibodies. 2010; 19(4): 107-11.
PAUDYAL B, PAUDYAL P, ORIUCHI N, et. al. Positron emission tomography imaging and biodistribution of vascular endothelial growth factor with 64Cu-labeled bevacizumab in colorectal cancer xenografts. Cancer Sci. 2011; 102(1): 117-21.
ASHRAFI SA, HOSSEINIMEHR SJ, VARMIRA K, ABEDI SM. Radioimmunotherapy with ¹³¹I-bevacizumab as a specificmolecule for cells with overexpression of the vascular endothelial growth factor. Cancer Biother Radiopharm. 2012; 27(7): 420-5.
GAYKEMA SB, SCHRÖDER CP, VITFELL-RASMUSSEN J, et. al. 89Zr-trastuzumab and 89Zr-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-AUY922 in metastatic breast cancer patients. Clin Cancer Res. 2014; 20(15): 3945-54.
KÄRRE K, LJUNGGREN HG, PIONTEK G, KIESSLING R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. J Immunol. 2005; 174(11): 6566-9.
SCHOTT M. Immunesurveillance by dendritic cells: potential implication for immunotherapy of endocrine cancers. Endocr Relat Cancer. 2006; 13(3): 779-95.
CHENG M, CHEN Y, XIAO W, et. al. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013; 10(3): 230-52.
SHI Y, PARHAR RS, ZOU M, et. al. Gene therapy of anaplastic thyroid carcinoma with a single-chain interleukin-12 fusion protein. Hum Gene Ther. 2003; 14(18): 1741-51.
MELDER RJ, BROWNELL AL, SHOUP TM, et. al . Imaging of activated natural killer cells in mice by positron emission tomography: preferential uptake in tumours. Cancer Res. 1993; 53(24): 5867-71.
MEIER R, PIERT M, PIONTEK G, et. al. Tracking of [18F]FDG-labeled natural killer cells to HER2/neu-positive tumours. Nucl Med Biol. 2008; 35(5): 579-88.
MELLER B, FROHN C, BRAND JM, et. al. Monitoring of a new approach of immunotherapy with allogenic (111)In-labelled NK cells in patients with renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2004; 31(3): 403-7.
MATERA L, GALETTO A, BELLO M, et. al. In vivo migration of labeled autologous natural killer cells to liver metastases in patients with colon carcinoma. J Transl Med. 2006; 4: 49.
SCHÄFER E, DUMMER R, EILLES C, et. al . Imaging pattern of radiolabeled lymphokine-activated killer cells in patients with metastatic malignant melanoma. Eur J Nucl Med. 1991; 18(2): 106-10.
GALLI F, HISTED S, ARAS O. NK cell imaging by in vitro and in vivo labelling approaches. Q J Nucl Med Mol Imaging. 2014; 58(3): 276-83.
NELSON BH. CD20+ B cells: the other tumour-infiltrating lymphocytes. J Immunol. 2010; 185(9): 4977-82.
CORONELLA-WOOD JA, HERSH EM. Naturally occurring B-cell responses to breast cancer. Cancer Immunol. Immunother. 2003; 52(12): 715-738.
CHIN Y, JANSEENS J, VANDEPITTE J, et. al. Phenotypic analysis of tumour-infiltrating lymphocytes from human breast cancer. Anticancer Res. 1992; 12(5): 1463-1466.
MARSIGLIANTE S, VISCOSO L, MARRA A, et. al. Computerised counting of tumour infiltrating lymphocytes in 90 breast cancer specimens. Cancer Lett. 1999; 139(1): 33-41.
GMEINER STOPAR T, FETTICH J, ZVER S, et. al. 99mTc-labelled rituximab, a new non-Hodgkin’s lymphoma imaging agent: first clinical experience. Nucl Med Común. 2008; 29(12): 1059-65.
MALVIYA G, ANZOLA KL, PODESTA E, et. al. (99m)Tc-labeled Rituximab for Imaging B Lymphocyte Infiltration in Inflammatory Autoimmune Disease Patients. Mol Imaging Biol. 2012; 14(5): 637-46.
DAVIS TA, KAMINSKI MS, LEONARD JP, et. al. The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res. 2004; 10(23): 7792-7798.
IVANOV A, KRYSOV S, CRAGG MS, ILLIDGE T. Radiation therapy with tositumomab (B1) anti-CD20 monoclonal antibody initiates extracellular signal-regulated kinase/mitogen-activated protein kinase-dependent cell death that overcomes resistance to apoptosis. Clin Cancer Res. 2008; 14(15): 4925-4934.
CURIEL TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest. 2007; 117(5): 1167-74.
SIGNORE A, ANNOVAZZI A, BARONE R, et. al. 99mTc-interleukin-2 scintigraphy as a potential tool for evaluating tumour-infiltrating lymphocytes in melanoma lesions: a validation study. J Nucl Med. 2004; 45(10): 1647-52.
RENARD V, STAELENS L, SIGNORE A, et. al. Iodine-123-interleu-kin-2 scintigraphy in metastatic hypernephroma: a pilot study. Q J Nucl Med Mol Imaging. 2007; 51(4): 352-6.
LOOSE D, SIGNORE A, STAELENS L, et. al. (123) I-Interleukin-2 uptake in squamous cell carcinoma of the head and neck carcinoma. Eur J Nucl Med Mol Imaging. 2008; 35(2): 281-6.
SIGNORE A, CAPRIOTTI G, CHIANELLI M, et. al. Detection of insulitis by pancreatic scintigraphy with 99mTc-labeled IL-2 and MRI in patients with LADA (Action LADA 10). Diabetes Care. 2015; 38(4): 652-8.
CHIANELLI M, PARISELLA MG, VISALLI N, et. al. Pancreatic scintigraphy with 99mTc-interleukin-2 at diagnosis of type 1 diabetes and after 1 year of nicotinamide therapy. Diabetes Metab Res Rev. 2008; 24(2): 115-22.
ANNOVAZZI A, BIANCONE L, CAVIGLIA R, et. al. 99mTc-interleukin-2 and (99m)Tc-HMPAO granulocyte scintigraphy in patients with inactive Crohn’s disease. Eur J Nucl Med Mol Imaging. 2003; 30(3): 374-82.
SIGNORE A, CHIANELLI M, ANNOVAZZI A, et. al. Imaging active lymphocytic infiltration in coeliac disease with iodine-123-inter-leukin-2 and the response to diet. Eur J Nucl Med. 2000; 27(1): 18-24.
CHIANELLI M, MATHER SJ, GROSSMAN A, et. al. 99mTc-interleukin-2 scintigraphy in normal subjects and in patients with autoimmune thyroid diseases: a feasibility study. Eur J Nucl Med Mol Imaging. 2008; 35(12): 2286-93.