Las plantas como radioprotectores potenciales frente a la radiación ionizante

Contenido principal del artículo

Alena Alonso Martín
Eliseo Almeida Varela

Resumen

Los radioprotectores son agentes que reducen la toxicidad, mutagenicidad y otros efectos biológicos adversos de las radiaciones ionizantes en los organismos vivos. El desarrollo de agentes radioprotectores es de interés en las investigaciones por su potencial empleo en la exploración espacial, la radioterapia o la guerra nuclear. Sin embargo, continúa la búsqueda de radioprotectores efectivos que sean a la vez ideales y seguros, así como el desarrollo de ensayos clínicos con algunos de ellos. Por otra parte, diferentes grupos de investigación se han enfrascado durante varias décadas, en la búsqueda de fuentes alternativas a los compuestos químicos y sus análogos sintéticos existentes, con énfasis en los extractos vegetales. Este trabajo brinda información reciente acerca de especies de plantas, incluidas las existentes en Cuba (endémicas o no), para las cuales se han descrito propiedades radioprotectoras promisorias. Se discute además sobre los posibles mecanismos de radioprotección implicados en dicho efecto. Junto a las investigaciones realizadas, otros estudios serán necesarios para determinar el papel radioprotector de estas plantas en diferentes aplicaciones.

Detalles del artículo

Cómo citar
Alonso Martín, A., & Almeida Varela, E. (1). Las plantas como radioprotectores potenciales frente a la radiación ionizante. Nucleus, (44). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/512
Sección
Panorama Nuclear

Citas

[1] LITTLEFIELD LG, JOINER EE, COILER SP, et. al. Concentration dependent protection against X-ray-induced chromosome aberrations in human lymphocytes by aminothiol WR-1065. Radiat. Res. 1993; 133: 88-93.
[2] SWEENEY T R. A survey of compounds from the antiradiation drug development program of the US army medical research and development command (Walter Red Inst Res). Washington DC: US Goverment Printing Office, 1979. p. 1-851.
[3] NAIR CHKK, PARIDA DK, NOMURA T. Radioprotectors in Radiotherapy. J. Radiat. Res. 2001; 42: 21-37.
[4] PAMUJULA S, KISHORE V, RIDER B, et. al. Radioprotection in mice following oral delivery of amifostine nanoparticles. Int. J. Radiat. Biol. 2005; 81(3): 251-257.
[5] ANDREASSEN CN, GRAU C, LINDEGAARD JC. Chemical radioprotection: a critical review of amifostine as a cytoprotector in radiotherapy. Semin. Radiat Oncol. 2003; 13(1): 62-72.
[6] RADEN D, FEHLAUER F, BAJROVIC A, et. al. Serious adverse effects of amifostine during radiotherapy in head and neck cancer patients. Radiotherapy and Oncology. 2004; 70: 261- 264.
[7] SASSE AD, CLARK LG, SASSE EC, CLARK OA. Amifostine reduces side effects and improves complete response rate during radiotherapy: results of a meta-analysis. Int J Radiat Oncol Biol Phys. 2006; 64(3): 784-91.
[8] JAGETIA GC. Radioprotective potencial of plants and herbs against the effects of ionizing radiation. J. Clin. Biochem. Nutr. 2007; 40: 74-81.
[9] ARORA R, GUPTA D, CHAWLA R, et. al. Radioprotection by Plant Products: Present Status and Future Prospects. Phytother. Res. 2005; 19: 1-22.
[10] JAGETIA GCH, VENKATESH P, BALIGA MS. Evaluation of the radioprotective effect of Aegle marmelos (L.) Correa in cultured human peripheral blood lymphocytes exposed to different doses of g-radiation: a micronucleus study. Mutagenesis 2003; 18(4): 387-393.
[11] BATTACHARYA S, SUBRAMANIAN M, ROYCHOWDHURY S, et. al. Radioprotective property of the ethanolic extract of Piper betel Leaf. J. Radiat.Res. 2005; 46: 165-171.
[12] CHAWLA R, ARORA R, KUMAR R, et. al. Antioxidant activity of fractionated extracts of rhizomes of high-altitude Podophyllum hexandrum: Role in radiation protection. Molecular and Cellular Biochemistry. 2005; 273: 193-208.
[13] KRISHNA A, KUMAR A. Evaluation of radioprotective effects of Rajgira (Amaranthus paniculatus:) extract in Swiss albino mice. J. Radiat. Res. 2005; 46: 233-239.
[14] RAMOS A, VISOZO A, PILOTO J, et. al. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. J. Ethnopharm. 2003; 87: 241-246.
[15] FUENTES JL, ALONSO A, CUÉTARA E, et. al. Usefulness of SOS Chromotest in the study of medicinal plant as radioprotectors. Intern J. Radiat Biol. 2006; 82(5): 323-329.
[16] FUENTES JL, VERNHE M, CUETARA EB, et. al. Tannins from barks of Pinus caribaea protect Escherichia coli cells against DNA damage induced by ã-rays. Fitoterapia. 2006; 77: 116-120.
[17] ROSARIO LA. Evaluación in vitro del efecto radioprotector del extracto acuoso de Manguifera indica L. (Vimang). Tesis de Diploma. Universidad de la Habana. Facultad de Biología, 2007.
[18] DEL BARRIO G, PARRA F. Evaluation of the antiviral activity of an aqueous extract from Phyllanthus orbicularis. J Ethnopharm. 2000; 72: 317-322.
[19] DHIR H, ROY AK, SHARMA A. Relative efficiency of Phyllanthus emblica fruit extract and ascorbic acid in modifying Pb and Al induced Sister Chromatid Exchanges in Mouse bone marrow. Environm. Mol. Mutagen. 1993; 21(3): 229-236.
[20] GHOSH AC. Relative protection given by extract of Phyllanthus emblica fruit and equivalent amount of vitamin C against a known clastogen CsCl. Food Chem.Toxical. 1992; 30(10): 865-869.
[21] GOWRISHANKER G, VIVEKANANDAN OS. In vivo studies of a crude extract of Phyllanthus amarus L. in modifying the genotoxicity induced in Vicia faba L. by tannery effluents. Mutat. Res. 1994; 322: 185-192.
[22] NANDI P, TALUKDER G, SHARMA A. Dietary Chemoprevention of Clastogenic Effects Of 3,4-Benzo(A)Pyrene By Emblica Officinalis Gaertn. Fruit Extract. British. J. Cancer. 1997; 76(10): 1279-1283.
[23] SRIPANIDKULCHAI B, TATTAWASART U, LAUPATARAKASEM P, et. al. Antimutagenic and anticarcinogenic effects of Phyllanthus amarusus:. Phytomedicine. 2002; 9: 26-32.
[24] KUMAR KBH, KUTTAN R. Chemoprotective activity of an extract of Phyllanthus amarus against cyclophosphamide induced toxicity in mice. Phytomedicine. 2005; 12: 494-500.