Aplicaciones del PET/CT en oncología
Contenido principal del artículo
Resumen
PET significa Tomografía por Emisión de Positrones y es una técnica de medicina nuclear en la cual se emplean radiofármacos marcados con emisores de positrones que permiten obtener imágenes bioquímico-metabólicas del cuerpo humano. El PET/CT permite obtener imágenes multimodales que combinan información anatómica y metabólica y permiten realizar un diagnóstico más seguro de un tumor o de las metástasis locales o a distancia en un órgano o tejido. Otros equipos multimodales combinan las imágenes metabólicas con la resonancia magnética nuclear. El PET/CT se emplea fundamentalmente en Oncología (85-90 %), Neurología, Cardiología, Inflamación e Infección, aunque actualmente también es empleado en diferentes patologías médicas y quirúrgicas. En el presente trabajo deseamos mostrar qué es el PET/CT y su utilidad en la Oncología.
Detalles del artículo
Cómo citar
Oliva González, J. P., Martínez Ramírez, A., & Paul Baum, R. (1). Aplicaciones del PET/CT en oncología. Nucleus, (62), 10-13. Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/3
Sección
Panorama Nuclear
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
Citas
[1]. WARBURG O. Ueber die Glykolyse der Tumorzelle Über den stoffwechsel der carcinomzelle. Klinische Wochenschrift. 1925; 4(12): 534-536.
[2]. WARBURG O. The metabolism of tumors. New York,1931.
[3]. BAUM RP. PET: Indicaciones clínicas en Oncología. En: Oncología nuclear. Madrid: Editorial MEDITECNICA, 2006. p. 479-494.
[4]. BIERSACK HJ, OLIVA JP, ROEDEL R. PET/CT en oncología. En: ONCOLOGÍA NUCLEAR. Madrid: Editorial MEDITECNICA, 2006. p. 467-478.
[5]. WITHOFS N, CHARLIER E, SIMONI P, et. al. 18F-FPRGD2 PET/CT imaging of musculoskeletal disorders. Ann Nucl Med. 2015. 29(10): 839-847.
[6]. GARCÍA JR, FORTUNY C, RIAZA L, et. al. Diagnóstico mediante 18F-FDG PET/CT en Endocarditis infecciosa, estadificación y monitorización de tratamiento antibiótico tras transposición de grandes vasos corregida quirúrgicamente. Rev Esp Med Nucl Imagen Mol. 2016; 35(2):115-117.
[7]. SHIMIZU K, OKITA R, SAISHO S, et. al. Clinical significance of dual-time-point 18F-FDG PET imaging in resectable non.small cell lung cáncer. Ann Nucl Med. 2015; 29(10): 854-860.
[8]. SOLNES L, JONES KM, ROWE S, et. al. Diagnostic value of 18F-FDG PET/CT versus MRI in the setting of antibody specific autoimmune encephalitis. J Nucl Med. 2017; 58(8): 1307-1313.
[9]. BROWNELL G, BURNHAM C. MGH Positron camara. En: Tomographic imaging in Nuclear Medicine. New York: Society of Nuclear Medicine, 1973. p. 154-164.
[10]. PHELPS M, HOFFMAN E, MULLANI N, et. al. Design considerations for a positron emission transaxial tomograph (PET III). I.E.E.E. Trans. Biomeb.Eng. 1976; NS-23(1): 516-522.
[11]. TOWNSEND DW, BEYE T, BLODGETT TM. PET-CT scanners: A hardware approach to image fusion. Sem Nucl Med 2003; 338(3): 193-204
[12]. BEYER T, ANTOCH G, MÜLLER S. Acqusition protocol considerations for combined PET-CT imaging. J Nucl Med. 2004; 45(suppl 1): 25S-35S.
[13]. KINAHAN PE, HAZEGAWA BH, BEYER T. X-ray-based attennuation correction for positron emission tomography / computed tomography scanners. Sem Nucl Med. 2003; 33(3): 166-179
[14]. ANTOCH G, FREUDENBERG LS, BEYER T. To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med. 2004; 45(suppl 1): 56S-65S.
[15]. SARI O, KAYA B, GEDIK GK, et. al. Intramedullary metástasis detected with 18F-FDG-PET/CT. Rev Esp Med Nucl Imagin Mol. 2012; 31(5): 299-300.
[16]. SOLLINI M, CALABRESE L, ZANGHERI B, et. al. 18F-FDG PET/CT versus bone scintigraphy in the follow of gastric cáncer. Rev Esp Med Nucl Imagen Mol. 2016; 35(2): 121-123.
[17]. PLYKU D, HOBBS RF, HUANG K, et. al. Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal in 124I-PET/CT based dosimetry for 131I therapy of metastatic differentiated thyroid cancer. J Nucl Med. 2017; 58(7): 1146-1154.
[18]. ROEDEL R, PALMEDO H, REICHMANN K. Vorläufige Ergebnisse der kombinierten PET-CT Bildgebung bei Kopf-Hals-Tumoren. Nuklearmedizin. 2004; 43: A54 (abstr.).
[19]. SCHRÖDER H, FURY M, LEE N, KRAUS D. PET monitoring of therapy response in head and neck squamous cell carcinoma. J Nucl Med. 2009; 50(suppl 1): 745-885.
[20]. BAUM RP, KULKARNI HR. THERANOSTICS: from molecular imaging using Ga-68 labeled tracers and petct to personalized radionuclide therapy – the bad berka experience. Theranostics. 2012; 2(5): 437-447.
[21]. BAUM RP, SWIETASZCZYK C, PRASAD V. FDG-PET/CT in lung cancer: an update. Radiat Ther Oncol. 2010; 42: 15-45.
[22]. HÖRSCH D, SCHMIDT KW, ANLAUF M, et. al. Neuroendocrine tumors of the bronchopulmonary system (typical and atypical carcinoid tumors): current strategies in diagnosis and treatment. Conclusions of an Expert Meeting February 2011 in Weimar, Germany. Oncol Res Treat 2014; 37(5): 266-276.
[23]. DESSEROIT, MC, TIXIER F, WEBER WA, et. al. Reliability of PET/CT shape and heterogeneity features in functional and morphologic components of non–small cell lung cancer tumors: a repeatability analysis in a prospective multicenter cohort. J Nucl Med. 2017; 58(3): 406-411.
[24]. OCHOA FIGUEROA MN, UÑA GOROSPE J, ALLENDE RIERA A, et. al. Utilidad de la PET-TC con baja dosis de 18F-FDG en pacientes con sospecha de recurrencia de carcinoma colorrectal en métodos diagnósticos convencionales. Rev Esp Med Nucl Imagen Mol. 2012; 31(5): 249-256.
[25]. GÓMEZ CAMARERO P, ORTIZ DE TENA A, BORREGO DORADO I , et. al. Evaluación de la eficacia y del impacto clínico de la 18F-FDG PET en el diagnóstico de recurrencia del carcinoma medular de tiroides con calcitonina elevada y pruebas de imagen negativas. Rev Esp Med Nucl Imagen Mol. 2012; 31(5):261-266.
[26]. AYAN AK, ERDEMCI B, ORSAL E, et. al. Is there any correlation between levels of serum ostepontin, CEA, and FDG uptake in lung cancer patients with bone metastasis?. Rev Esp Med Nucl Imagen Mol. 2016; 35(2): 102-106.
[27]. BAUM RP, KULKARNI HR, SCHUCHARDT, C, et. al. 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med. 2016; 57(7): 1006-1013.
[28]. MATTEI R, RUBELLO D, FERLIN G, BAGATELLA F. Positron emission tomography (PET) with 18-fluorodeoxyglucose (FDG) in the diagnosis and preoperative staging of head and neck tumors: a prospective study. Acta Otorhinolaryngol Ital. 1998; 18(6): 387-391.
[29]. LEBON V, ALBERINI JL, PIERGA JY, et. al. Rate of distant metastases on 18f-fdg pet/ct at initial staging of breast cancer: comparison of women younger and older than 40 years. J Nucl Med. 2017; 58(2): 252-257.
[30]. GIESEL FL, SCHNEIDER F, KRATOCHWIL C, et. al. Correlation Between SUVmax and CT Radiomic Analysis Using Lymph Node Density in PET/CT-Based Lymph Node Staging. J Nucl Med. 2017; 58(2): 282-287.
[31]. VATANKULU B, EKMEKCIOGLU O, AKSOY SY, et. al. Assessment of treatment response with FDG PET/CT on a primary neuroendocrine tumor of vagina. Rev Esp Med Nucl Imagen Mol. 2016; 35(2): 143-144.
[32]. BAKHSHI S, BHETHANABHOTLA S, KUMAR R, et. al. Posttreatment PET/CT rather than interim pet/ct using deauville criteria predicts outcome in pediatric hodgkin lymphoma: a prospective study comparing pet/ct with conventional imaging. J Nucl Med. 2017; 58(4): 577-583.
[33]. FENDLER WP, CALAIS J, ALLEN-AUERBACH M, et. al. 68Ga-PSMA-11 PET/CT interobserver agreement for prostate cancer assessments: an international multicenter prospective study. J Nucl Med. 2017; 58(10): 1617-1623.
[34]. AYAN AK., ERDEMCI B, ORSAL E, et. al. Is there any correlation between levels of serum ostepontin, CEA, and FDG uptake in lung cancer patients with bone metastasis?. Rev Esp Med Nucl Imagen Mol. 2016; 35(2): 102-106.
[35]. GARCÍA AM, SORIANO A, PRUNEDA RE, et. al. Basal 18F-FDG PET/CT as a predictive biomarker of tumor responso for neoadjuvant therapy in breast cancer. Rev Esp Med Nucl Imagen Mol. 2016; 35(2): 81-87.
[36]. ADAMS HJA & KWEE TC. Fact sheet about interim and end-of-treatment 18F-FDG PET/CT in lymphoma J Nucl Med. 2017; 58(7): 1178-1179.
[37]. O JH, JACENE, HA, LUBER B, et. al. Quantitation of cancer treatment response by FDG PET/CT: multi-center assessment of measurement variability. J Nucl Med. 2017; 58(9): 1429-1434.
[38]. MACMANUS M, NESTLE U, ROSENZWEIG KK, et. al. Use of PE and PET/CT for radiation therapy planning: IAEA expert report 2006-2007. Radiother Oncol. 2009; 91(1): 85-94.
[39]. EINSPIELER I, RAUSCHER I, DÜWEL C, et. al. Detection efficacy of hybrid 68Ga-PSMA ligand PET/CT in prostate cancer patients with biochemical recurrence after primary radiation therapy defined by Phoenix criteria. J Nucl. 2017; 58(7): 1081-1087.
[40]. BEUKINGA RJ, HULSHOFF JB, van DIJK LV, et. al. Predicting response to neoadjuvant chemoradiotherapy in esophageal cancer with textural features derived from pretreatment 18F-FDG PET/CT Imaging. J Nucl Med. 2017; 58(5): 723-729.
[41]. TAGHIPOUR M, MARCUS C, SHEIKHBAHAE S, et. al. Clinical indications and impact on management: fourth and subsequent posttherapy follow-up 18F-FDG PET/CT scans in oncology patients. J Nucl Med. 2017; 58(5): 737-743.
[2]. WARBURG O. The metabolism of tumors. New York,1931.
[3]. BAUM RP. PET: Indicaciones clínicas en Oncología. En: Oncología nuclear. Madrid: Editorial MEDITECNICA, 2006. p. 479-494.
[4]. BIERSACK HJ, OLIVA JP, ROEDEL R. PET/CT en oncología. En: ONCOLOGÍA NUCLEAR. Madrid: Editorial MEDITECNICA, 2006. p. 467-478.
[5]. WITHOFS N, CHARLIER E, SIMONI P, et. al. 18F-FPRGD2 PET/CT imaging of musculoskeletal disorders. Ann Nucl Med. 2015. 29(10): 839-847.
[6]. GARCÍA JR, FORTUNY C, RIAZA L, et. al. Diagnóstico mediante 18F-FDG PET/CT en Endocarditis infecciosa, estadificación y monitorización de tratamiento antibiótico tras transposición de grandes vasos corregida quirúrgicamente. Rev Esp Med Nucl Imagen Mol. 2016; 35(2):115-117.
[7]. SHIMIZU K, OKITA R, SAISHO S, et. al. Clinical significance of dual-time-point 18F-FDG PET imaging in resectable non.small cell lung cáncer. Ann Nucl Med. 2015; 29(10): 854-860.
[8]. SOLNES L, JONES KM, ROWE S, et. al. Diagnostic value of 18F-FDG PET/CT versus MRI in the setting of antibody specific autoimmune encephalitis. J Nucl Med. 2017; 58(8): 1307-1313.
[9]. BROWNELL G, BURNHAM C. MGH Positron camara. En: Tomographic imaging in Nuclear Medicine. New York: Society of Nuclear Medicine, 1973. p. 154-164.
[10]. PHELPS M, HOFFMAN E, MULLANI N, et. al. Design considerations for a positron emission transaxial tomograph (PET III). I.E.E.E. Trans. Biomeb.Eng. 1976; NS-23(1): 516-522.
[11]. TOWNSEND DW, BEYE T, BLODGETT TM. PET-CT scanners: A hardware approach to image fusion. Sem Nucl Med 2003; 338(3): 193-204
[12]. BEYER T, ANTOCH G, MÜLLER S. Acqusition protocol considerations for combined PET-CT imaging. J Nucl Med. 2004; 45(suppl 1): 25S-35S.
[13]. KINAHAN PE, HAZEGAWA BH, BEYER T. X-ray-based attennuation correction for positron emission tomography / computed tomography scanners. Sem Nucl Med. 2003; 33(3): 166-179
[14]. ANTOCH G, FREUDENBERG LS, BEYER T. To enhance or not to enhance? 18F-FDG and CT contrast agents in dual-modality 18F-FDG PET/CT. J Nucl Med. 2004; 45(suppl 1): 56S-65S.
[15]. SARI O, KAYA B, GEDIK GK, et. al. Intramedullary metástasis detected with 18F-FDG-PET/CT. Rev Esp Med Nucl Imagin Mol. 2012; 31(5): 299-300.
[16]. SOLLINI M, CALABRESE L, ZANGHERI B, et. al. 18F-FDG PET/CT versus bone scintigraphy in the follow of gastric cáncer. Rev Esp Med Nucl Imagen Mol. 2016; 35(2): 121-123.
[17]. PLYKU D, HOBBS RF, HUANG K, et. al. Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal in 124I-PET/CT based dosimetry for 131I therapy of metastatic differentiated thyroid cancer. J Nucl Med. 2017; 58(7): 1146-1154.
[18]. ROEDEL R, PALMEDO H, REICHMANN K. Vorläufige Ergebnisse der kombinierten PET-CT Bildgebung bei Kopf-Hals-Tumoren. Nuklearmedizin. 2004; 43: A54 (abstr.).
[19]. SCHRÖDER H, FURY M, LEE N, KRAUS D. PET monitoring of therapy response in head and neck squamous cell carcinoma. J Nucl Med. 2009; 50(suppl 1): 745-885.
[20]. BAUM RP, KULKARNI HR. THERANOSTICS: from molecular imaging using Ga-68 labeled tracers and petct to personalized radionuclide therapy – the bad berka experience. Theranostics. 2012; 2(5): 437-447.
[21]. BAUM RP, SWIETASZCZYK C, PRASAD V. FDG-PET/CT in lung cancer: an update. Radiat Ther Oncol. 2010; 42: 15-45.
[22]. HÖRSCH D, SCHMIDT KW, ANLAUF M, et. al. Neuroendocrine tumors of the bronchopulmonary system (typical and atypical carcinoid tumors): current strategies in diagnosis and treatment. Conclusions of an Expert Meeting February 2011 in Weimar, Germany. Oncol Res Treat 2014; 37(5): 266-276.
[23]. DESSEROIT, MC, TIXIER F, WEBER WA, et. al. Reliability of PET/CT shape and heterogeneity features in functional and morphologic components of non–small cell lung cancer tumors: a repeatability analysis in a prospective multicenter cohort. J Nucl Med. 2017; 58(3): 406-411.
[24]. OCHOA FIGUEROA MN, UÑA GOROSPE J, ALLENDE RIERA A, et. al. Utilidad de la PET-TC con baja dosis de 18F-FDG en pacientes con sospecha de recurrencia de carcinoma colorrectal en métodos diagnósticos convencionales. Rev Esp Med Nucl Imagen Mol. 2012; 31(5): 249-256.
[25]. GÓMEZ CAMARERO P, ORTIZ DE TENA A, BORREGO DORADO I , et. al. Evaluación de la eficacia y del impacto clínico de la 18F-FDG PET en el diagnóstico de recurrencia del carcinoma medular de tiroides con calcitonina elevada y pruebas de imagen negativas. Rev Esp Med Nucl Imagen Mol. 2012; 31(5):261-266.
[26]. AYAN AK, ERDEMCI B, ORSAL E, et. al. Is there any correlation between levels of serum ostepontin, CEA, and FDG uptake in lung cancer patients with bone metastasis?. Rev Esp Med Nucl Imagen Mol. 2016; 35(2): 102-106.
[27]. BAUM RP, KULKARNI HR, SCHUCHARDT, C, et. al. 177Lu-labeled prostate-specific membrane antigen radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med. 2016; 57(7): 1006-1013.
[28]. MATTEI R, RUBELLO D, FERLIN G, BAGATELLA F. Positron emission tomography (PET) with 18-fluorodeoxyglucose (FDG) in the diagnosis and preoperative staging of head and neck tumors: a prospective study. Acta Otorhinolaryngol Ital. 1998; 18(6): 387-391.
[29]. LEBON V, ALBERINI JL, PIERGA JY, et. al. Rate of distant metastases on 18f-fdg pet/ct at initial staging of breast cancer: comparison of women younger and older than 40 years. J Nucl Med. 2017; 58(2): 252-257.
[30]. GIESEL FL, SCHNEIDER F, KRATOCHWIL C, et. al. Correlation Between SUVmax and CT Radiomic Analysis Using Lymph Node Density in PET/CT-Based Lymph Node Staging. J Nucl Med. 2017; 58(2): 282-287.
[31]. VATANKULU B, EKMEKCIOGLU O, AKSOY SY, et. al. Assessment of treatment response with FDG PET/CT on a primary neuroendocrine tumor of vagina. Rev Esp Med Nucl Imagen Mol. 2016; 35(2): 143-144.
[32]. BAKHSHI S, BHETHANABHOTLA S, KUMAR R, et. al. Posttreatment PET/CT rather than interim pet/ct using deauville criteria predicts outcome in pediatric hodgkin lymphoma: a prospective study comparing pet/ct with conventional imaging. J Nucl Med. 2017; 58(4): 577-583.
[33]. FENDLER WP, CALAIS J, ALLEN-AUERBACH M, et. al. 68Ga-PSMA-11 PET/CT interobserver agreement for prostate cancer assessments: an international multicenter prospective study. J Nucl Med. 2017; 58(10): 1617-1623.
[34]. AYAN AK., ERDEMCI B, ORSAL E, et. al. Is there any correlation between levels of serum ostepontin, CEA, and FDG uptake in lung cancer patients with bone metastasis?. Rev Esp Med Nucl Imagen Mol. 2016; 35(2): 102-106.
[35]. GARCÍA AM, SORIANO A, PRUNEDA RE, et. al. Basal 18F-FDG PET/CT as a predictive biomarker of tumor responso for neoadjuvant therapy in breast cancer. Rev Esp Med Nucl Imagen Mol. 2016; 35(2): 81-87.
[36]. ADAMS HJA & KWEE TC. Fact sheet about interim and end-of-treatment 18F-FDG PET/CT in lymphoma J Nucl Med. 2017; 58(7): 1178-1179.
[37]. O JH, JACENE, HA, LUBER B, et. al. Quantitation of cancer treatment response by FDG PET/CT: multi-center assessment of measurement variability. J Nucl Med. 2017; 58(9): 1429-1434.
[38]. MACMANUS M, NESTLE U, ROSENZWEIG KK, et. al. Use of PE and PET/CT for radiation therapy planning: IAEA expert report 2006-2007. Radiother Oncol. 2009; 91(1): 85-94.
[39]. EINSPIELER I, RAUSCHER I, DÜWEL C, et. al. Detection efficacy of hybrid 68Ga-PSMA ligand PET/CT in prostate cancer patients with biochemical recurrence after primary radiation therapy defined by Phoenix criteria. J Nucl. 2017; 58(7): 1081-1087.
[40]. BEUKINGA RJ, HULSHOFF JB, van DIJK LV, et. al. Predicting response to neoadjuvant chemoradiotherapy in esophageal cancer with textural features derived from pretreatment 18F-FDG PET/CT Imaging. J Nucl Med. 2017; 58(5): 723-729.
[41]. TAGHIPOUR M, MARCUS C, SHEIKHBAHAE S, et. al. Clinical indications and impact on management: fourth and subsequent posttherapy follow-up 18F-FDG PET/CT scans in oncology patients. J Nucl Med. 2017; 58(5): 737-743.