The study of radiation damage to materials at the Center for Technological Applications and Nuclear Development (CEADEN)

Main Article Content

Carlos M. Cruz Inclán
Antonio Leyva Fabelo

Abstract

CEADEN's Damage Laboratory accumulates more than 30 years of experience in research on the subject of radiational damage to materials. A multitude of targets have passed through the group's sights: high-temperature superconductors, different nanostructures, classical and advanced semiconductors, perovskites, radiation detection devices, etc. Gamma ray sources, high energy electrons, heavy ions, etc., have been used in the investigations. Multiple characterization and simulation techniques, modern calculation methodologies have entered the hands of specialists to carry out their work. Hundreds of publications and participation in scientific events, four ACC National Awards, two Carlos J. Finlay medals, and others, plus commendable teaching work, are part of the results of the collective. A very summarized history of this scientific trajectory within the line of work of this Laboratory is presented in this work.

Article Details

How to Cite
Cruz Inclán, C. M., & Leyva Fabelo, A. (2023). The study of radiation damage to materials at the Center for Technological Applications and Nuclear Development (CEADEN). Nucleus, (73), 46-51. Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/786
Section
Ciencias Nucleares

References

[1] LEYVA A, CRUZ C, ARAGÓN B, SUÁREZ JC, MORA M. Obtención de cerámicas superconductoras con el empleo de reactivos cubanos. Optimización del método de síntesis. Reporte de la Comisión de Energía Atómica de Cuba. CEAC-R 1/91. p. 1-11.
[2] DARIAS J, CARRILLO E, CASTILLO R, ARTECHE J, et al. Sistema de descarga de arco sumergida para la síntesis de nanoonions de carbono multicapas. Revista Cubana de Física. 2011; 28(1): 2-3. https://doi.org/10.1016/B0-12-227410-5/00411-7.
[3] AYZENSHTAT GI, BUDNITSKY DL, KORETSKAYA OB, NOVIKOV VA, et. al. GaAs resistor structures for X-ray imaging detectors. Nucl. Instrum. Methods Phys. Res. A. 2002; 487: 96-101. https://doi.org/10.1016/S0168-9002(02)00951-8.
[4] WATERS LS, McKINNEY GW, DURKEE JW, FENSIN ML, et. al. The MCNPX Monte Carlo Radiation Transport Code. AIP Conference Proceedings, 2007; 896(1): 81. https://doi.org/10.1063/1.2720459.
[5] ZIEGLER JF, ZIEGLER MD and BIERSACK JP. SRIM the stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. B. 2010; 268(11-12): 1818-1823. https://doi.org/10.1016/j.nimb.2010.02.091.
[6] PIÑERA I. Simulation of atom displacements distribution profiles induced by photons and electrons in solid materials [tesis doctoral]. Departamento de Física, Universidad de Amberes, Bélgica. Abril, 2014. Identifier: c:irua:116687. https://hdl.handle.net/10067/1166870151162165141.
[7] CRUZ CM, PIÑERA I, CORREA C, ABREU Y, et. al MCSAD: Monte Carlo Simulation of Atom Displacements induced by Fast Electrons in Solids. IEEE Nuclear Science Symposium Conference Record. Valencia, Spain, 2011; RTSD.S-282: 4622-4626. DOI: 10.1109/NSSMIC.2011.6154746
[8] LEYVA A. Efectos de las Radiaciones Gamma sobre Cerámicas Superconductoras de interés en las tecnologías nucleares [tesis doctoral]. Facultad de Física, Universidad de La Habana. Cuba. Abril, 2014.
[9] LAGE J, LEYVA A, TOLEDO C, PIÑERA I, et. al. Electrical resistance behavior with gamma radiation dose in bulk carbon nanostructured samples. Proceedings of the XIV Workshop on Nuclear Physics and VIII International Symposium on Nuclear and Related Techniques. WONP-NURT'2013. Havana, Cuba. February 5-8, 2013. Identifier: PS-RP24: 141-144. ISBN 978-959-7136-98-9.
[10] LEYVA A, LEYVA D, RUBIERA JA, CRUZ CM, et. al. Study by Raman Spectroscopy of the induced radiation damage in GaAs:Cr exposed to 20 MeV electron beam. Revista Cubana de Física. 2021; 38(1): 4-9.
[11] KRUCHONAK U, ABOU EL-AZM S, AFANACIEV K, CHELKOV, et. al. Radiation hardness of GaAs:Cr and Si sensors irradiated by electron beam. Nucl. Instrum. Methods Phys. Res. A. 2020; 975: 164204-164214. doi: 10.1016/j.nima.2020.164204.
[12] ABU AL AZM SM, CHELKOV G, KOZHEVNIKOV D, GUSKOV A, et. al. Response of Timepix detector with GaAs:Cr and Si sensor to heavy ions. Physics of Particles and Nuclei Letters. 2016; 13(3): 363-369.
[13] LEYVA A, RUBIERA JA, LEYVA D, PIÑERA I, et. al. Monte Carlo simulation of the radiation transport in chromium compensated gallium arsenide detectors. Nucleus, 2018; (64): 19-23.
[14] GONZÁLEZ E, ABREU Y, CRUZ CM, PIÑERA I, et. al. Molecular-dynamics simulation of threshold displacement energies in BaTiO3. Nucl. Instrum. Methods Phys. Res. B. 2015; 358: 142-145. https://doi.org/10.1016/j.nimb.2015.06.015
[15] ABREU ALFONSO Y. Hyperfine parameters and radiation damage in semiconductors and superconducting materials. [tesis doctoral]. Departamento de Física, Universidad de Amberes, Bélgica. Abril, 2014. Identifier: c:irua:116686. https://hdl.handle.net/10067/1166860151162165141
[16] CRUZ CM, LEYVA A. Estudio de la respuesta al daño radiacional gamma de materiales cerámicos superconductores. Premio de la Academia de Ciencias de Cuba 2002. la Habana, Cuba.
[17] PIÑERA I, CRUZ CM, LEYVA A, ABREU Y. Método clásico asistido por Monte Carlo para la evaluación del daño radiacional en materiales sólidos. Premio de la Academia de Ciencias de Cuba 2012. La Habana, Cuba.
[18] ABREU Y, CRUZ CM, PIÑERA I, LEYVA A, et. al. Estudio teórico de los parámetros hiperfinos y del daño radiacional en materiales semiconductores y superconductores. Premio de la Academia de Ciencias de Cuba 2016. La Habana, Cuba.
[19] CRUZ CM, PIÑERA I, LEYVA A, ABREU Y, et. al. Simulación numérica de procesos de desplazamientos atómicos inducidos por las radiaciones gamma y electrónica: herramientas y sistemática. Premio de la Academia de Ciencias de Cuba 2016. La Habana, Cuba.
[20] CRUZ CM, PIÑERA I, LEYVA A, ABREU Y. Studies on the Gamma Radiation Responses of High Tc Superconductors. In: Superconductor. Chapter 7. p.135-160. 2010. doi: 10.5772/10122.

Most read articles by the same author(s)