Study of the patient´s related dose produced by computer tomography with a hybrid SPECT/CT System: preliminary results

Main Article Content

Adlin López Díaz
Armando del Pozo Almaguer
Adalberto Machado Tejeda
Juan Miguel Martín Escuela
Karla Batista Ramó
Leonel Alberto Torres Aroche
Carlos Fabián Calderón Marín
Manuel S. Fernández Rondón

Abstract

The introduction in Cuba of imaging hybrid systems in nuclear medicine has become a challenge for medical physicist in order to guaranty the patient´s radiation safety and proper dose estimation. The aim of this study was to retrospectively evaluate the CT radiation doses for studies performed with a SPECT/CT hybrid system (SPECT/CT). A MATLAB “in house” made tool was tested and validated for this purpose. 62 patients with CT studies were manually and automatically reviewed; the tool could visualize and properly recover the patient personal information, CT protocol and dose related data from the DICOM header in the SPECT/CT study file. The CT volume dose index (CTDIvol) parameter was used for calculating the CT dose-length product (DPL) and the effective doses (E). The CT radiation dose preliminary results were on the range of those reported by others authors for the typical studies, demonstrating the efficacy of the tool developed and the CT dose assessment method.

Article Details

How to Cite
López Díaz, A., del Pozo Almaguer, A., Machado Tejeda, A., Martín Escuela, J. M., Batista Ramó, K., Torres Aroche, L. A., Calderón Marín, C. F., & Fernández Rondón, M. S. (2022). Study of the patient´s related dose produced by computer tomography with a hybrid SPECT/CT System: preliminary results. Nucleus, (70). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/753
Section
Ciencias Nucleares

References

[1]. European Commission. Medical radiation exposure of the european population. Radiation Protection No. 180. European Commission, 2014. Available in: https://ec.europa.eu/energy/sites/ener/files/documents/RP180.pdf.
[2]. UNSCEAR. Report to the General Assembly. Annex A: medical radiation exposure vol. 1. 2008.
[3]. IAEA. Bonn call for action platform ]web site]. ]consulta: 12/4/2021]. Available in: https://www.iaea.org/resources/rpop/resources/bonn-call-for-action-platform
[4]. REHANI MM. Looking for solutions: vision and a call-forattention for radiation research scientists. Int J Radiat Biol. 2019; 95(6): 703-796.
[5]. BEBBINGTON NA, HADDOCK BT, BERTILSSON H, et. al. A Nordic survey of CT doses in hybrid PET/CT and SPECT/CT examinations. JNMMI Physics. 2019; 6(24).
[6]. MARTÍ-CLIMENT JM, PRIETO E, MORÁN V, et. al. Effective dose estimation for oncological and neurological PET/CT procedures. EJNMMI Research. 2017; 7(1): 37.
[7]. CITMA. Guía de seguridad para la práctica de medicina nuclear. Resolución Nro.40/ 2011 del CITMA. La Habana: CITMA, 2012.
[8]. ICRP. Radiological protection and safety in medicine. ICRP publication 73. Ann ICRP. 1996; 26: 1-47.
[9]. ANDISCO D, BLANCO S, BUZZI AE. Dosimetría en tomografía computada. Revista Argentina de Radioliología. 2014; 73(3): 156-60.
[10]. ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP. 2007; 37(2-4):1-332.
[11]. Universidad de Deusto - Grupo PAS. Estándar y protocolo de imágenes médicas DICOM. ]consulta:11/2/2021]. Disponible en: http://www.pas.deusto.es.
[12]. PÉREZ NC, TORRES JT, GARRASTACHO JC, et. al. Bioestadística. Cienfuegos, Cuba: Universo Sur; 2013. 141 p.
[13]. CROWLEY C, EKPO EU, CAREY BW, et. al. Radiation dose tracking in computed tomography: red alerts and feedback. Implementing a radiationdose alert system in CT. Radiography. 2021; 27(1):67-74.
[14]. National Diagnostic Reference Levels (NDRLs) from 19 August 2019. Guidance. [consulta: 12/01/2021]. Available in: https://www.gov.uk/government/publications/diagnostic-radiology-national-diagnostic-reference-levels-ndrls/ndrl.
[15]. FERRARI M, DE MARCO P, ORIGGI D, PEDROLI G. SPECT/CT radiation dosimetry. Clin Transl Imaging. 2014; 2: 557-69.
[16]. GIMELLI A, ACHENBACH S, BUECHEL RR, et. al. Strategies for radiation dose reduction in nuclear cardiology and cardiac computed tomography imaging: a report from the European Association of Cardiovascular Imaging (EACVI), the Cardiovascular Committee of European Association of Nuclear Medicine (EANM), and the European Society of Cardiovascular Radiology (ESCR). Eur Heart Journal. 2018; 39: 286-96.
[17]. BRINDHABAN A. Effective Dose to patients from SPECT and CT during myocardial perfusion imaging. J Nucl Med Technol. 2020; 48: 143-7.
[18]. DAMILAKIS J, FRIJA G, HIERATH M, et. al. European study on clinical diagnostic reference levels for X-ray medical imaging. Deliverable 2.1: report and review on existing clinical DRLs. Tender Contract N° ENER/2017/NUCL/SI2.759174. EUCLID-European Study on Clinical DRLs. European Commission, March 2018 EC.
[19]. KANAL KM, BUTLER PF, SENGUPTA D, et. al. U.S. Diagnostic reference levels and achievable doses for 10 adult CT examinations. Radiology. 2017; 284(1): 120-33.
[20]. Centro Nacional de Seguridad Nuclear. Reglamento normas básicas de seguridad radiológica. Resolución conjunta CITMA-MINSAP. La Habana: CNSN, 2001. Gaceta oficial de la Rapública de Cuba. La Habana, 2002. Disponible en: http://www.gacetaoficial.cu)
[21]. European Commission. European guidelines on quality criteria for computed tomography. EUR 16262 EN. Directorate-General XII: science, research and development. 1999.