Energy calibration of GaAs:Cr-based Timepix detector with alpha particles
Main Article Content
Abstract
The advanced GaAs:Cr material for radiation detection is in the scope of many scientific and technological institutions in the world, as a result of its proved superior properties and economic advantages. The energy calibration of a hybrid GaAs:Cr-based Timepix detector with alpha particles performed in the Dzhelepov Laboratory of Nuclear Problems at Joint Institute for Nuclear Research confirms that the device is able to register these particles in energy range from 3140 to 7687 keV. The mathematical simulation was used to calculate the transmitted energy, making possible the experimental calibration with the use of Mylar as absorbent. By calibrating the detector with characteristic X rays of some target materials and using a two steps fitting procedure was determined the relationship between the photon energies and the registered by the detector TOT counts. The energy calibration with alpha particles was performed according to a linear function and verified with the measurement of the 218Po line of radon in air.
Article Details
How to Cite
Ramos, D., Smolyanskiy, P., Leyva, A., Zhemchugov, A., & Torres, A. G. (2019). Energy calibration of GaAs:Cr-based Timepix detector with alpha particles. Nucleus, (64). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/660
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
[1] LLOPART X, BALLABRIGA R, CAMPBELL M, et. al. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Instrum. Methods Phys A. Res. 2007; 581: 485-494.
[2] AYZENSHTAT GI, BUDNITSKY DL, KORETSKAYA OB, et al. GaAs resistor structures for X-ray imaging detectors. Nucl. Instrum. Methods Phys A. Res. 2002; 487: 96-101.
[3] TYAZHEV AV, BUDNITSKY DL, KORETSKAYA OB, et. al. GaAs radiation imaging detectors with an active layer thickness up to 1 mm. Nucl. Instrum. Methods Phys A. Res.2003; 509: 34-39.
[4] HAMANN E, CECILIA A, ZWERGER A, et. al. Characterization of photon counting pixel detectors based on semi-insulating GaAs sensor material. J. Phys.: Conf. Ser. 2013; 425: 062015.
[5] TIKU S & BISWAS D. Integrated circuit fabrication technology. Florida: CRC Press Taylor & Francis Group, 2016. ISBN: 978-981-4669-31-3.
[6] SHI W & XIE G. Influence of EL2 deep level on photoconduction of semi-insulating GaAs under ultrashort pulse photo injection. Laser Physics Letters. 2016; 13(2): 341- 376.
[7] SRI. 2016 [consulted on April 10th 2017]. Available in: Available in: http://www.sourceray.com/oem .
[8] PixetProSOFTWARE version 1.4.4.504 [consulted on April 12th 2017]. Available in: Available in: http://www.advacam.com/en/products .
[9] ZIEGLER JF, ZIEGLER MD & BIERSACK JP. SRIM - The stopping and range of ions in matter. NIM B. 2010; 268(11-12): 1818-1823.
[10] BUTLER A, BUTLER B, BELL S, et. al. Measurement of the energy resolution and calibration of hybrid pixel detector with GaAs: Cr sensor and Timepix Readout Chip. Physics of Particles and Nuclei Letters. 2015; 12(1): 59-73.
[11] JAKUBEK J . Precise energy calibration of pixel detector working in time-over-threshold mode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011; 633(1): 262-266.
[12] BECKHOFF B, KANNGIEBER B, LANGHOFF N, et. al. Handbook of practical X-ray fluorescense analysis. Berlin: Springer, 2006. ISBN: 103-540-28603-9.
[13] TABLE OF RADIOACTIVE ISOTOPES. 2017 [consulted on May 25th 2017]. Available in: Available in: http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA .
[2] AYZENSHTAT GI, BUDNITSKY DL, KORETSKAYA OB, et al. GaAs resistor structures for X-ray imaging detectors. Nucl. Instrum. Methods Phys A. Res. 2002; 487: 96-101.
[3] TYAZHEV AV, BUDNITSKY DL, KORETSKAYA OB, et. al. GaAs radiation imaging detectors with an active layer thickness up to 1 mm. Nucl. Instrum. Methods Phys A. Res.2003; 509: 34-39.
[4] HAMANN E, CECILIA A, ZWERGER A, et. al. Characterization of photon counting pixel detectors based on semi-insulating GaAs sensor material. J. Phys.: Conf. Ser. 2013; 425: 062015.
[5] TIKU S & BISWAS D. Integrated circuit fabrication technology. Florida: CRC Press Taylor & Francis Group, 2016. ISBN: 978-981-4669-31-3.
[6] SHI W & XIE G. Influence of EL2 deep level on photoconduction of semi-insulating GaAs under ultrashort pulse photo injection. Laser Physics Letters. 2016; 13(2): 341- 376.
[7] SRI. 2016 [consulted on April 10th 2017]. Available in: Available in: http://www.sourceray.com/oem .
[8] PixetProSOFTWARE version 1.4.4.504 [consulted on April 12th 2017]. Available in: Available in: http://www.advacam.com/en/products .
[9] ZIEGLER JF, ZIEGLER MD & BIERSACK JP. SRIM - The stopping and range of ions in matter. NIM B. 2010; 268(11-12): 1818-1823.
[10] BUTLER A, BUTLER B, BELL S, et. al. Measurement of the energy resolution and calibration of hybrid pixel detector with GaAs: Cr sensor and Timepix Readout Chip. Physics of Particles and Nuclei Letters. 2015; 12(1): 59-73.
[11] JAKUBEK J . Precise energy calibration of pixel detector working in time-over-threshold mode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011; 633(1): 262-266.
[12] BECKHOFF B, KANNGIEBER B, LANGHOFF N, et. al. Handbook of practical X-ray fluorescense analysis. Berlin: Springer, 2006. ISBN: 103-540-28603-9.
[13] TABLE OF RADIOACTIVE ISOTOPES. 2017 [consulted on May 25th 2017]. Available in: Available in: http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA .