Nuclear physics and astronomical observations of compact objects

Main Article Content

T. Schilbach
J. D. Trujillo
O. L. Caballero

Abstract

We discuss our predictions of two astrophysics observations: neutrino emission and element abundances. We studied the emission and possible detection of neutrinos from past black hole accretion disks. We find neutrinos are copiously emitted from these sites and encourage the development of large facilities for detection. We also studied changes in the synthesis of neutron-rich elements due to the suppression of key nuclear processes. We find important changes in the element abundances due to the, previously overlooked, alpha decay.

Article Details

How to Cite
Schilbach, T., Trujillo, J. D., & Caballero, O. L. (2019). Nuclear physics and astronomical observations of compact objects. Nucleus, (63), 62-66. Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/650
Section
Ciencias Nucleares

References

[1] ABBOTT B, et. al., Multi-messenger Observations of a Binary Neutron Star Merger. ApJ. 2017; 848(2): L12
[2] NAKAMURA KO, et. al. A review of the r-process in the collapsar jet Int. J. Mod. Phys. E 2013; 22: 1330022.
[3] ARNOULD M, GORIELY S, TAKAHASHI K. The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries, Phys. Rept. 2007; 450: 97.
[4] MUMPOWER MR, SURMAN R, MCLAUGHLIN GC, APRAHAMIAN A. The impact of individual nuclear properties on r-process nucleosynthesis. Prog. Part. Nucl. Phys. 2016; 86: 86-126.
[5] LUNARDINI C. Diffuse supernova neutrinos at underground laboratories. Astropart. Phys. 2016; 79: 49-77.
[6] YANG L, LUNARDINI C. Revealing local failed supernovae with neutrino telescopes. Phys. Rev. D. 2011; 84(6): 063002.
[7] LEHNER L, et. al. Unequal mass binary neutron star mergers and multimessenger signals, Class. Quant. Grav. 2016; 33(18): 184002.
[8] CABALLERO OL, MCLAUGHLIN GC, SURMAN R. Detecting neutrinos from black hole neutron stars mergers. Phys. Rev. D. 2009; 80: 123004.
[9] FUKUDA S, et. al. The Super-Kamiokande detector. Nucl. Inst. Meth. Phys. A. 2003; 501: 418-462.
[10] NAKAZATO K, MOCHIDA E, NIINO Y, SUZUKI H. Spectrum of the supernova relic neutrino background and metallicity evolution of galaxies. Astrophys J. 2015; 804(1): 75.
[11] DAVIS JH, FAIRBAIRN M. A "nu" look at gravitational waves: The black hole birth rate from neutrinos combined with the merger rate from LIGO. J Cosmol Astroparticle Phys. 2017; 1707(07): 052.
[12] SCHILBACH T, CABALLERO OL , MCLAUGHLIN GC . Black hole accretion disk diffuse neutrino background, submitted to Phys. Rev. D, 2017.
[13] KOSTKA, M., KONING, N., SHAND, Z., OUYED, R., JAIKUMAR, P. r-Java 2.0: Astrophysics. A&A manuscript 2014.
[14] FAROUQI K, KRATZ K.-L, PFEIER B, et. al. Charged-particle adn neutron-capture processes in the high-entropy wind of core-collapse supernovae.Astrophys J. 2010; 712: 1359.
[15] KOSTKA M, KONING N, SHAND Z, OUYED R, & JAIKUMAR P. The r-Java 2.0 code: nuclear physics. Astronomy and Astrophysics. 2014; 568: A97.
[16] FRYER CL, et. al. The fate of the compact remnant in neutron star mergers. Astrophys J . 2015; 812(1): 24.
[18] CHEN W, BELOBORODOV AM. Neutrino-cooled accretion disks around spinning black holes. Astrophys J. 2007; 657: 383-399.
[19] DOMINIK M, et. al. Double Compact Objects II: Cosmological Merger Rates, ApJ 2013; 779: 72.
[20] HOGG DW. Distance measures in cosmology. 1999. Disponible en: https://arxiv.org/abs/astro-ph/9905116.