Gamow-Teller ?<sup>+</sup> decay properties of A=98 isobars near <sup>100</sup>Sn doubly magic core

Main Article Content

Nadjet LAOUET
Fatima BENRACHI

Abstract

In this work, we have realized some spectroscopic calculations in the framework of the nuclear shell model, in order to estimate the Gamow-teller (GT) ? +decay of A=98 proton rich isobars in 100Sn mass region near rp-process path. The calculations are carried out by means of Oxbash nuclear structure code, taking into account the monopole effect in the studied mass region. The obtained results are then compared to the available experimental data.

Article Details

How to Cite
LAOUET, N., & BENRACHI, F. (2019). Gamow-Teller ?<sup>+</sup> decay properties of A=98 isobars near <sup>100</sup&gt;Sn doubly magic core. Nucleus, (63), 38-40. Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/644
Section
Ciencias Nucleares

References

[1] BROWN BA, RYKACZEWSKI K. Gamow-Teller strengh in the region of 100Sn.Phy. Rev. C.1994; 50(5): R2270-R2273.
[2] FER3RER R, BREE N, COCOLIOS TE, et. al. In-gas-cell laser ionization spectroscopy in the vicinity of 100Sn. Phys. Lett. B. 2014; 728: 191-197.
[3] GÓRSKA M, LIPOGLAVSEK M, GRAWE H, et. al. 98Cd: the two-proton-hole spectrum in 100Sn. Phys. Rev. Lett. 1997; 79(13): 2415-2418.
[4] BLAZHEV A, GÓRSKA M , GRAWE H , et. al. Observation of a core-excited E4 isomer in 98Cd. Phys. Rev. C. 2004; 69: 064304.
[5] HUYSE M, CORNELIS K, DUMONT G, et. al. The decay of neutron deficient 97Ag, 98Ag, and 99g, mAg. Z. Phys. A. 1978; 288(1): 107-108.
[6] ATEN AWH Jr, de VRIES-HAMERLING T. Formation and properties of neutron-deficient isotopes of rhodium and palladium. Physica. 1955; 21: 597-598.
[7] COVELLO A, CORAGGIO L, GARGANO A,ITACO N. Structure of particle-hole nuclei around 100Sn. Phys. Rev. C. 2004; 70: 034310.
[8] BROWN BA. Oxbash for windows PC. MSU-NSCL Report. 1289. 2004.
[9] SMIRNOVA NA, BALLY B, HEYDE K, et. al. Shell evolution and nuclear forces. Phys. Lett. B. 2010; 686(2’3): 109-113.
[10] SORLINO & PORQUET MG. Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys. 2008; 61(2): 602-673.
[11] UMEYA A, NAGAI S, KANEKO G & MUTO K. Monopole and quadrupole interactions in binding energies of sd-shell nuclei. Phys. Rev. C. 2008; 77: 034318.
[12] POVES A & ZUKER AP. Theoretical spectroscopy and the fp shell. Phys. Rep. 1981; 70(4): 235-314.
[13] ZUKER AP. Monopole, quadrupole and pairing: a shell model view. Phys. Scr. 2000; T88: 157-161.
[14] ZUKER AP. Three-body monopole corrections to the realistic interactions. Phys. Rev. Lett. 2003; 90(4): 042502.
[15] OTSUKA T, SUZUKI T, HOLT JD, et. al. Three-body forces and the limit of oxygen isotopes. Phys. Rev. Lett. 2010; 105: 032501.
[16] JENSEN MH, KUO TTS & OSNES E. Realistic effective interactions for nuclear systems. Phys. Rep. 1995; 261(3-4): 125-270.
[17] REJMUND R, NAVIN A, BHATTACHARYYA S, et. al. Structural changes at large angular momentum in neutron-rich 121-123Cd. Phys. Rev. C. 2016; 93: 024312.
[18] KAR K, CHAKRAVARTI S & MANFREDI VR. Beta decay rates for nuclei with 115 < A < 140 for r-process nucleosynthesis. Pramana-J Phys. 2006; 67(2): 363-368.
[19] SUHONEN J. From nucleons to nucleus: concepts of microscopic nuclear theory. Series: theoretical and mathematical physics: Berlin Heidelberg: Springer, 2007.
[20] AUDI G, WANG M, WAPSTRA AH, et. al. The AME2012 atomic mass evaluation. Chinese Phys. C. 2012, 36(12): 1603-2014.
[21] GRAWE H , LANGANKEK, MARTINEZ-PINEDO G. Nuclear structure and astrophysics. Rep. Prog. Phys. 2007; 70(9): 1525-1582.