Nanoscience in the InSTEC and its relationship with nuclear science and technologies

Main Article Content

Daniel Codorniu Pujals
Yuri Aguilera Corrales

Abstract

This paper deals with the application of different experimental and theoretical tools to study nanomaterials as well as research aimed at combining the use of nano- and nuclear technologies carried out at the Higher Institute of Technologies and Applied Sciences. The wide participation of students in the research is highlighted, thus contributing to the assimilation of concepts and methods of nanosciences by the graduates of nuclear careers.

Article Details

How to Cite
Codorniu Pujals, D., & Aguilera Corrales, Y. (1). Nanoscience in the InSTEC and its relationship with nuclear science and technologies. Nucleus, (58). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/610
Section
Panorama Nuclear

References

[1] IAEA. Emerging applications of radiation in nanotechnology. IAEATECDOC-
1438. Vienna: IAEA, March 2005.
[2] KRASHENINNIKOV V & NORDLUND K. Ion and electron irradiation-induced effects in nanostructured materials. J Appl. Phys. 2010; 107(7): 071301.
[3] ASSADI M, AFRASIBI K, NABIPOUR I & SEYEDABADI M. Nanotechnology
and nuclear medicine; research and preclinical applications. Hellenic Journal of Nuclear Medicine. 2011; 14 (2): 149- 159.
[4] NOVOSELOV KS, et. al. Electric field effect in atomically thin carbon films. Science. 2004, 306(5696): 666-669.
[5] CODORNIU D, AGUILERA Y & BALDASARRE F. Calculation of the number of atoms displaced during the irradiation of monolayer graphene. J. Radioanal. Nucl. Chem. 2011; 289(1): 167-172.
[6] CODORNIU D & BERMÚDEZ A. An expression for estimating the number of atoms displaced during the irradiation of monolayer graphene with neutrons. 2012 [article on line]. Available in: arxiv. org/pdf/1210.4099
[7] TUINSTRA F & KOENIG JL. Raman Spectrum of Graphite. J. Chem. Phys. 1970; 53(3): 1126-1130.
[8] CODORNIU D. Raman D-band in the irradiated graphene: Origin of the non-monotonous dependence of its intensity with defect concentration. Nucleus. 2013; (53): 10-13.
[9] DARIAS JG, HERNÁNDEZ L, CODORNIU D, et al. Carbon nanostructures
obtained by underwater arc discharge of graphite electrodes: Synthesis and characterization [article on line]. Available in: arxiv.org/pdf/1502.04062.
[10] CODORNIU D, ARIAS O, DESDÍN L, et. al. Raman spectroscopy of polyhedral carbon nano-onions. Appl. Phys. A. 2015. 120(4): 1339-1345.
[11] ROY D, CHHOWALLA M, WANG H, et. al. Characterization of carbon
nano-onions using Raman spectroscopy. Chemical Physics Letters. 2003. 373(1-2): 52-56.
[12] CODORNIU D. Changes in the vibrational properties of graphene and other related nano-strcutures under strain. Memorias del WONP-NURT’2015. La Habana, Feb. 9-13 2015. ISBN 978-959- 300-069-7.
[13] DRESSELHAUS MS, DRESSELHAUS G & EKLUND P C. Science of fullerenes and carbon nanotubes. Academic Press, 1966. ISBN 0-12-231820-5.
[14] LAGE J, LEYVA A, TOLEDO C, et. al. Electrical resistance behavior with gamma radiation dose in bulk carbon nanostructured samples. Memorias del WONP-NURT’2013. La Habana, 2013. ISBN 978-959-7136-98-9.
[15] BERMÚDEZ A. Caracterización mediante espectroscopía Raman de nanoestructuras presentes en precipitados obtenidos a través de descarga de arco con electrodos de grafito en agua [tesis para optar por el título de Licenciado en Física Nuclear]. La Habana: InSTEC, 2014.
[16] PÉREZ A. Influencia de la corriente de descarga sobre los espectros
Raman de los nano-onions obtenidos por descarga de arco
[tesis para optar por el título de Licenciado en Física Nuclear]. La Habana: InSTEC, 2015.
[17] HERNÁNDEZ D. Canalización de protones en nanotubos de carbono
[tesis para optar por el título de Licenciado en Física Nuclear]. La Habana: InSTEC, 2015.