Measurement of the photoeffect cross section and the K-absorption edge energy of Dy, Ta, Pt and Au atoms using Bremsstrahlung
Main Article Content
Abstract
An experimental setup to determine the K-shell photoelectric cross-section of Dy, Ta, Pt and Au atoms was implemented at the Nuclear Analytical Laboratory (LAN) of the InSTEC. Bremsstrahlung photons, produced by - beta particles hitting a thin Ni converter, were used to irradiate the target under study. A HPGe detector, coupled to standard nuclear instrumentation, collected the incident and transmitted spectra. A sharp decrease in intensity at the K-shell binding energy was observed in the transmitted spectra. The photon beam divergence effects were corrected with a calibration curve calculated with Monte Carlo simulations (MCNPX 2.6). In order to establish accurately the cross section at the K-edge energy, the obtained data was processed by two methods: fitting the total cross section to a sigmoidal function, as well as the cross section branches around the K-edge to the empirical law . The Empirical Law method was introduced in this work to minimize the detector resolution effects. The results were compared with experimental and theoretical values showing the best agreement when the thinner targets were used. For the first time the photoeffect cross section at the K-edge energy for Pt is reported at first time.
Article Details
How to Cite
García Álvarez, J. A., López Pino, N., Díaz Rizo, O., Corrales, Y., & Maidana, N. L. (1). Measurement of the photoeffect cross section and the K-absorption edge energy of Dy, Ta, Pt and Au atoms using Bremsstrahlung. Nucleus, (54). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/585
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
1. HUBBELL JH. Review and history of photon cross section calculation. Phys Med Bio. 2006; 51(13): 245-262.
2. HUBBELL JH. Review of photon interaction cross section data in the medical and biological context. Phys Med Biol. 1999; 44(1): 1-22.
3. GERWARD L. X-ray attenuation coefficients: Current state of knowlegment and availability. Radiat Phys Chem. 1992; 41(4-5): 783-789.
4. VEIGELE WJ. Photon Cross Section from 0.1 keV to 1 MeV for Elements Z=1 to Z=94. Atomic. Data Tables. 1973; 5: 51-111.
5. SCOFIELD JH. Theoretical photoionization cross sections from 1 keV to 1500 keV. UCRL-51326. California: Lawrence Livermore Laboratory, 1973.
6. CHANTLER CT. Theoretical Form Factor, Attenuation and Scattering Tabulation for Z=1-92 from E=1-10 eV to E=0.4-1.0 MeV. J Phys Chem Ref Data. 1995; 24: 71-94.
7. BERGER MJ, HUBBELL JH. XCOM: Photon Cross Sections on a Personal Computer. NBSIR 87-3597. Gaithersburg: National Bureau of Standards (former name of NIST), 1987.
8. BERGER MJ, HUBBELL JH. XCOM: Photon Cross Sections Database, Web Version 1.2. Gaithersburg MD 20899, USA: National Institute of Standards and Technology. 1999. Available http://physics.nist.gov/xcom. Originally published as NBSIR 87-3597. XCOM: Photon Cross Sections on a Personal Computer.
9. GERWARD L. X-ray absorption in matter. Reengineering XCOM. Rad Phys Chem, 2001; 60: 23-45.
10. KARABULUT A, GUROL A, BUDAK G, POLAT R. Measurements of L subshell and total L shell photoeffect cross-sections for some elements in 72 ? Z ? 92. Eur Phys J. D. 2002; 21(1): 57-61.
11. CHANTLER CT, TRAN CQ, BARNEA Z, et. al. Measurement of x-ray mass attenuation coefficient of copper using 8.85 – 20 keV synchrotron radiation. Phys Rev A. 2001; 64(6): 062506-062513.
12. MALLIKARJUNA ML, APPAJI GORDA SB, GOWDA R, UMESH TK. Studies on photon interaction around the K-edge of some rare-earth elements. Rad Phys Chem. 2002; 65(3): 217-223.
13. NAYAK SV, BADIGER NM. Measurement of K-shell photoelectric absorption parameters of Hf, Ta, Au, and Pb by an alternative method using a weak ?-particle source. Phys Rev A. 2006; 73(3): 032707.
14. NAYAK SV, BADIGER NM. A novel method for measuring K-shell photoelectric parameters of high-Z elements. J Phys B. 2006; 39(12): 2893.
15. JAMES RW. The Optical Principles of Diffraction of X-rays. London: Bell & Sons, 1948.
16. HOSUR SB, BADIGER NM, NAIK LR. Determination of K-shell oscillator strengths and the imaginary form factors of atoms using a weak beta source. J Phys B. 2008; 41(9): 095003.
17. SANCHEZ DEL RIO M, BRUNETTI A, GOLOSIO B, et. al. XRAYLIB tables (X-ray fluorescence cross-section). Calculation using XRAYLIB 2.3. European Synchrotron Radiation Facility and University of Sassari, 2003.
2. HUBBELL JH. Review of photon interaction cross section data in the medical and biological context. Phys Med Biol. 1999; 44(1): 1-22.
3. GERWARD L. X-ray attenuation coefficients: Current state of knowlegment and availability. Radiat Phys Chem. 1992; 41(4-5): 783-789.
4. VEIGELE WJ. Photon Cross Section from 0.1 keV to 1 MeV for Elements Z=1 to Z=94. Atomic. Data Tables. 1973; 5: 51-111.
5. SCOFIELD JH. Theoretical photoionization cross sections from 1 keV to 1500 keV. UCRL-51326. California: Lawrence Livermore Laboratory, 1973.
6. CHANTLER CT. Theoretical Form Factor, Attenuation and Scattering Tabulation for Z=1-92 from E=1-10 eV to E=0.4-1.0 MeV. J Phys Chem Ref Data. 1995; 24: 71-94.
7. BERGER MJ, HUBBELL JH. XCOM: Photon Cross Sections on a Personal Computer. NBSIR 87-3597. Gaithersburg: National Bureau of Standards (former name of NIST), 1987.
8. BERGER MJ, HUBBELL JH. XCOM: Photon Cross Sections Database, Web Version 1.2. Gaithersburg MD 20899, USA: National Institute of Standards and Technology. 1999. Available http://physics.nist.gov/xcom. Originally published as NBSIR 87-3597. XCOM: Photon Cross Sections on a Personal Computer.
9. GERWARD L. X-ray absorption in matter. Reengineering XCOM. Rad Phys Chem, 2001; 60: 23-45.
10. KARABULUT A, GUROL A, BUDAK G, POLAT R. Measurements of L subshell and total L shell photoeffect cross-sections for some elements in 72 ? Z ? 92. Eur Phys J. D. 2002; 21(1): 57-61.
11. CHANTLER CT, TRAN CQ, BARNEA Z, et. al. Measurement of x-ray mass attenuation coefficient of copper using 8.85 – 20 keV synchrotron radiation. Phys Rev A. 2001; 64(6): 062506-062513.
12. MALLIKARJUNA ML, APPAJI GORDA SB, GOWDA R, UMESH TK. Studies on photon interaction around the K-edge of some rare-earth elements. Rad Phys Chem. 2002; 65(3): 217-223.
13. NAYAK SV, BADIGER NM. Measurement of K-shell photoelectric absorption parameters of Hf, Ta, Au, and Pb by an alternative method using a weak ?-particle source. Phys Rev A. 2006; 73(3): 032707.
14. NAYAK SV, BADIGER NM. A novel method for measuring K-shell photoelectric parameters of high-Z elements. J Phys B. 2006; 39(12): 2893.
15. JAMES RW. The Optical Principles of Diffraction of X-rays. London: Bell & Sons, 1948.
16. HOSUR SB, BADIGER NM, NAIK LR. Determination of K-shell oscillator strengths and the imaginary form factors of atoms using a weak beta source. J Phys B. 2008; 41(9): 095003.
17. SANCHEZ DEL RIO M, BRUNETTI A, GOLOSIO B, et. al. XRAYLIB tables (X-ray fluorescence cross-section). Calculation using XRAYLIB 2.3. European Synchrotron Radiation Facility and University of Sassari, 2003.