Characterization of the InSTEC’s low-background gamma spectrometer for environmental radioactivity studies

Main Article Content

Oscar Díaz Rizo
Neivy López Pino

Abstract

The capabilities of the LowBackground Gamma Spectrometer (LBGS) at InSTEC were studied for environmental purposes. Fifty three glines were identified in the LBGS background spectrum. The Minimum Detectable Activity for , , , , and were calculated using the detector’s volumetric efficiency simulated by Monte Carlo method. Validation was performed by absolute and relative analysis of radionuclide activities present in a marine sediment certified material.

Article Details

How to Cite
Díaz Rizo, O., & López Pino, N. (1). Characterization of the InSTEC’s low-background gamma spectrometer for environmental radioactivity studies. Nucleus, (46). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/526
Section
Ciencias Nucleares

References

1] GILMORE G, HEMINGWAY J. Practical Gamma-ray Spectrometry. John Wiley & Sons, 1995.
[2] VIDMAR T, AUBINEAU-LANIECE I, ANAGNOSTAKIS, et. al. An intercomparison of Monte Carlo codes used in gamma-ray spectrometry. Applied Radiat. Isot. 2008; 66(6-7): 764-768.
[3] LEPY MC, ALTZITZOGLOU T, ARNOLD D, et. al. Intercomparison of efficiency transfer software for gamma-ray spectrometry. Applied Radiat. Isot. 2001; 55(4): 493–503.
[4] IAEA. Intercomparison run IAEA-375: Determination of radionuclides in soil. Report IAEA/AL/075. Vienna: IAEA, 1994.
[5] GÓMEZ J, SOTO J. Ejercicio de intercomparación de resultados de medida de radiactividad en la Red de Vigilancia Radiológica Ambiental. Madrid: Consejo de Seguridad Nuclear, 1998. (in Spanish).
[6] CURRIE LA. Limits for quantitative detection and quantitative determination. Anal. Chem. 1968; 40(3): 586.
[7] FIRESTONE RB. Table of Isotopes. Wiley Interscience, 1996. Eighth edition.
[8] PELOWITZ DD. MCNPX TM User’s manual. LACP-05-0369. Version 2.5.0. Los Alamos National Laboratory Report, 2005.
[9] RÓDENAS J, MARTINAVARRO A, RIUS V. Validation of the MCNP code for the simulation of Ge-detector calibration. Nucl. Instr. Methods Phys. Res. A. 2000; 450(1): 88-97.
[10]KARAMANIS D. Efficiency simulation of HPGe and Si(Li) detectors in g- and X-ray spectroscopy. Nucl. Inst. and Meth. in Phys. Res. A. 2003; 505(1-2): 282-285.
[11]MARQUES SALGADO C, CONTI CC, BECKER PHB. Determination of HPGe detector response using MCNP5 for 20–150 keV X-rays. Applied Radiat. Isot. 2006; 64(6): 700–705.
[12]RÓDENAS J, GALLARDO S, BALLESTER S, et. al. Application of the Monte Carlo method to the analysis of measurement geometries for the calibration of a HP Ge detector in an environmental radioactivity laboratory. Nucl. Instr. Methods Phys. Res. B. 2007; 263(1): 144-148.
[13]QUEVAUVILLER PH, MARRIER E. Quality Assurance and Quality Control for Environmental Monitoring. Weinheim: VCH, 1995.
[14] VERPLANCKE V. Low level gamma spectroscopy: low, lower, lowest. Nucl. Instr. Methods Phys. Res. A. 1992; 312(1-2): 174-182.
[15]GELEN A, SOTO J, DÍAZ RIZO O, SIMON MJ, BELTRÁN J, RAMÍREZ M, HERRERA E, GÓMEZ J, RÓDENAS C. Radiological evaluation of sediments from the bay of Havana. Nucleus. 2002; (32): 17-22.
[16]ALONSO C. Environmental Radioactivity Sources, Distribution and Risk in Cuban Marine Ecosystem, Ph. D. Thesis. La Habana: InSTEC, 2010. (in Spanish)

Most read articles by the same author(s)