Characterization of the InSTEC’s low-background gamma spectrometer for environmental radioactivity studies
Main Article Content
Abstract
The capabilities of the LowBackground Gamma Spectrometer (LBGS) at InSTEC were studied for environmental purposes. Fifty three glines were identified in the LBGS background spectrum. The Minimum Detectable Activity for , , , , and were calculated using the detector’s volumetric efficiency simulated by Monte Carlo method. Validation was performed by absolute and relative analysis of radionuclide activities present in a marine sediment certified material.
Article Details
How to Cite
Díaz Rizo, O., & López Pino, N. (1). Characterization of the InSTEC’s low-background gamma spectrometer for environmental radioactivity studies. Nucleus, (46). Retrieved from http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/526
Issue
Section
Ciencias Nucleares
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
References
1] GILMORE G, HEMINGWAY J. Practical Gamma-ray Spectrometry. John Wiley & Sons, 1995.
[2] VIDMAR T, AUBINEAU-LANIECE I, ANAGNOSTAKIS, et. al. An intercomparison of Monte Carlo codes used in gamma-ray spectrometry. Applied Radiat. Isot. 2008; 66(6-7): 764-768.
[3] LEPY MC, ALTZITZOGLOU T, ARNOLD D, et. al. Intercomparison of efficiency transfer software for gamma-ray spectrometry. Applied Radiat. Isot. 2001; 55(4): 493–503.
[4] IAEA. Intercomparison run IAEA-375: Determination of radionuclides in soil. Report IAEA/AL/075. Vienna: IAEA, 1994.
[5] GÓMEZ J, SOTO J. Ejercicio de intercomparación de resultados de medida de radiactividad en la Red de Vigilancia Radiológica Ambiental. Madrid: Consejo de Seguridad Nuclear, 1998. (in Spanish).
[6] CURRIE LA. Limits for quantitative detection and quantitative determination. Anal. Chem. 1968; 40(3): 586.
[7] FIRESTONE RB. Table of Isotopes. Wiley Interscience, 1996. Eighth edition.
[8] PELOWITZ DD. MCNPX TM User’s manual. LACP-05-0369. Version 2.5.0. Los Alamos National Laboratory Report, 2005.
[9] RÓDENAS J, MARTINAVARRO A, RIUS V. Validation of the MCNP code for the simulation of Ge-detector calibration. Nucl. Instr. Methods Phys. Res. A. 2000; 450(1): 88-97.
[10]KARAMANIS D. Efficiency simulation of HPGe and Si(Li) detectors in g- and X-ray spectroscopy. Nucl. Inst. and Meth. in Phys. Res. A. 2003; 505(1-2): 282-285.
[11]MARQUES SALGADO C, CONTI CC, BECKER PHB. Determination of HPGe detector response using MCNP5 for 20–150 keV X-rays. Applied Radiat. Isot. 2006; 64(6): 700–705.
[12]RÓDENAS J, GALLARDO S, BALLESTER S, et. al. Application of the Monte Carlo method to the analysis of measurement geometries for the calibration of a HP Ge detector in an environmental radioactivity laboratory. Nucl. Instr. Methods Phys. Res. B. 2007; 263(1): 144-148.
[13]QUEVAUVILLER PH, MARRIER E. Quality Assurance and Quality Control for Environmental Monitoring. Weinheim: VCH, 1995.
[14] VERPLANCKE V. Low level gamma spectroscopy: low, lower, lowest. Nucl. Instr. Methods Phys. Res. A. 1992; 312(1-2): 174-182.
[15]GELEN A, SOTO J, DÍAZ RIZO O, SIMON MJ, BELTRÁN J, RAMÍREZ M, HERRERA E, GÓMEZ J, RÓDENAS C. Radiological evaluation of sediments from the bay of Havana. Nucleus. 2002; (32): 17-22.
[16]ALONSO C. Environmental Radioactivity Sources, Distribution and Risk in Cuban Marine Ecosystem, Ph. D. Thesis. La Habana: InSTEC, 2010. (in Spanish)
[2] VIDMAR T, AUBINEAU-LANIECE I, ANAGNOSTAKIS, et. al. An intercomparison of Monte Carlo codes used in gamma-ray spectrometry. Applied Radiat. Isot. 2008; 66(6-7): 764-768.
[3] LEPY MC, ALTZITZOGLOU T, ARNOLD D, et. al. Intercomparison of efficiency transfer software for gamma-ray spectrometry. Applied Radiat. Isot. 2001; 55(4): 493–503.
[4] IAEA. Intercomparison run IAEA-375: Determination of radionuclides in soil. Report IAEA/AL/075. Vienna: IAEA, 1994.
[5] GÓMEZ J, SOTO J. Ejercicio de intercomparación de resultados de medida de radiactividad en la Red de Vigilancia Radiológica Ambiental. Madrid: Consejo de Seguridad Nuclear, 1998. (in Spanish).
[6] CURRIE LA. Limits for quantitative detection and quantitative determination. Anal. Chem. 1968; 40(3): 586.
[7] FIRESTONE RB. Table of Isotopes. Wiley Interscience, 1996. Eighth edition.
[8] PELOWITZ DD. MCNPX TM User’s manual. LACP-05-0369. Version 2.5.0. Los Alamos National Laboratory Report, 2005.
[9] RÓDENAS J, MARTINAVARRO A, RIUS V. Validation of the MCNP code for the simulation of Ge-detector calibration. Nucl. Instr. Methods Phys. Res. A. 2000; 450(1): 88-97.
[10]KARAMANIS D. Efficiency simulation of HPGe and Si(Li) detectors in g- and X-ray spectroscopy. Nucl. Inst. and Meth. in Phys. Res. A. 2003; 505(1-2): 282-285.
[11]MARQUES SALGADO C, CONTI CC, BECKER PHB. Determination of HPGe detector response using MCNP5 for 20–150 keV X-rays. Applied Radiat. Isot. 2006; 64(6): 700–705.
[12]RÓDENAS J, GALLARDO S, BALLESTER S, et. al. Application of the Monte Carlo method to the analysis of measurement geometries for the calibration of a HP Ge detector in an environmental radioactivity laboratory. Nucl. Instr. Methods Phys. Res. B. 2007; 263(1): 144-148.
[13]QUEVAUVILLER PH, MARRIER E. Quality Assurance and Quality Control for Environmental Monitoring. Weinheim: VCH, 1995.
[14] VERPLANCKE V. Low level gamma spectroscopy: low, lower, lowest. Nucl. Instr. Methods Phys. Res. A. 1992; 312(1-2): 174-182.
[15]GELEN A, SOTO J, DÍAZ RIZO O, SIMON MJ, BELTRÁN J, RAMÍREZ M, HERRERA E, GÓMEZ J, RÓDENAS C. Radiological evaluation of sediments from the bay of Havana. Nucleus. 2002; (32): 17-22.
[16]ALONSO C. Environmental Radioactivity Sources, Distribution and Risk in Cuban Marine Ecosystem, Ph. D. Thesis. La Habana: InSTEC, 2010. (in Spanish)