La modelación de las secciones eficaces de reacción en la producción de radionúclidos teranosíticos
Contenido principal del artículo
Resumen
Utilizamos varios códigos de reacción nuclear con el objetivo de guiar, interpretar y respaldar los experimentos en las mediciones de producción de radionúclidos inducidas por protones para el desarrollo de productos radio-farmacéuticos innovadores. La comprensión de las secciones eficaces de reacción en energías intermedias bajas es crucial en este contexto y requiere el conocimiento de modelos nucleares disponibles en diferentes códigos, como EMPIRE, TALYS y FLUKA. Estos códigos de reacción nuclear sirven como herramienta para interpretar la medición de secciones eficaces de producción y para completar las mediciones con estimaciones de producción de contaminantes y / o isótopos estables que son difíciles de medir. Ilustramos diferentes cálculos de modelos para simular la producción de isótopos útiles en experimentos dedicados a la medición de la producción inducida por protones de los dos isótopos teranósticos 67Cu y 47Sc.
Detalles del artículo
Cómo citar
Fontana, A., Pupillo, G., Mou, L., Rossi Alvarez, C., Esposito, J., & Canton, L. (2019). La modelación de las secciones eficaces de reacción en la producción de radionúclidos teranosíticos. Nucleus, (65), 23-27. Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/673
Número
Sección
Ciencias Nucleares
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
Citas
[1] IAEA. Cyclotron produced radionuclides: physical characteristics and production methods. IAEA Technical Report Series 468. Vienna: IAEA, 2009. Available in http://www-pub.iaea.org/MTCD/publications/PDF/trs468_web.pdf.
[2] JALILIAN AR. IAEA. Therapeutic radiopharmaceuticals labelled with new emerging radionuclides (67Cu, 186Re, 47Sc). CRP presentations. CCRA-NA -6/15 2015-08-26. NEW CRP: F22053. Vienna: IAEA , 2016.
[3] NOVAK-HOFER I, SCHUBINGER PA. Copper-67 as a therapeutic nuclide for radioimmunotheraphy. Eur J Nucl Med. 2002; (29): 821-830.
[4] MAUSNER LF, KOLSKY KL, JOSHI V, SRIVASTAVA SC. Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot. 1998; (49): 285-294.
[5] PUPILLO G, SOUNALET T, MICHEL N, MOU L, et. al. New production cross section for the theranostic radionuclide 67Cu. Nuclear Inst. and Methods in Physics Research B. 2018; (415): 41-47. doi: https://doi.org/10.1016/j.nimb.2017.10.022.
[6] KONING AJ, HILARIE S, DUIJVESTIJN MC. TALYS-1.0. Proceedings of the International Conference on Nuclear Data for Science and Technology. April 22-27, 2007. Nice, France. p. 211-214.
[7] HERMAN M, CAPOTE R, CARLSON BV, OBLOZINSKY P, et. al. EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets. 2007; (108) 2655-2715.
[8] BOEHLEN TT, CERUTTI F, CHIN MPW, FASSO’ A, et. al. The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets. 2014; (120): 211-214.
[9] INFANTINO A, OEHLKE E, MOSTACCIA D, SCHAFFER P, et. al. Assessment of the production of medical isotopes using the Monte Carlo code FLUKA: simulations against experimental measurements. Nuclear Inst. and Methods in Physics Research B. 2016; 366: 117-123.
[10] DUCHEMIN C, GUERTIN A, HADDAD F, MICHEL N, et. al. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV. Phys Med Biol. 2015; 60(3): 931-946. doi: 10.1088/0031-9155/60/3/931.
[11] GORIELY S, HILAIRE S, KONING AJ. Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method. Phys. Rev. C. 2008; 78: 064307.
[12] DITRÒI, TARKANYI F, TAKACS S, HERMANNE A. Activation cross-sections of proton induced reactions on vanadium in the 37-65 MeV energy range. Nuclear Inst. and Methods in Physics Research B. 2016; 381: 16-28.
[2] JALILIAN AR. IAEA. Therapeutic radiopharmaceuticals labelled with new emerging radionuclides (67Cu, 186Re, 47Sc). CRP presentations. CCRA-NA -6/15 2015-08-26. NEW CRP: F22053. Vienna: IAEA , 2016.
[3] NOVAK-HOFER I, SCHUBINGER PA. Copper-67 as a therapeutic nuclide for radioimmunotheraphy. Eur J Nucl Med. 2002; (29): 821-830.
[4] MAUSNER LF, KOLSKY KL, JOSHI V, SRIVASTAVA SC. Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot. 1998; (49): 285-294.
[5] PUPILLO G, SOUNALET T, MICHEL N, MOU L, et. al. New production cross section for the theranostic radionuclide 67Cu. Nuclear Inst. and Methods in Physics Research B. 2018; (415): 41-47. doi: https://doi.org/10.1016/j.nimb.2017.10.022.
[6] KONING AJ, HILARIE S, DUIJVESTIJN MC. TALYS-1.0. Proceedings of the International Conference on Nuclear Data for Science and Technology. April 22-27, 2007. Nice, France. p. 211-214.
[7] HERMAN M, CAPOTE R, CARLSON BV, OBLOZINSKY P, et. al. EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets. 2007; (108) 2655-2715.
[8] BOEHLEN TT, CERUTTI F, CHIN MPW, FASSO’ A, et. al. The FLUKA code: developments and challenges for high energy and medical applications. Nucl. Data Sheets. 2014; (120): 211-214.
[9] INFANTINO A, OEHLKE E, MOSTACCIA D, SCHAFFER P, et. al. Assessment of the production of medical isotopes using the Monte Carlo code FLUKA: simulations against experimental measurements. Nuclear Inst. and Methods in Physics Research B. 2016; 366: 117-123.
[10] DUCHEMIN C, GUERTIN A, HADDAD F, MICHEL N, et. al. Production of medical isotopes from a thorium target irradiated by light charged particles up to 70 MeV. Phys Med Biol. 2015; 60(3): 931-946. doi: 10.1088/0031-9155/60/3/931.
[11] GORIELY S, HILAIRE S, KONING AJ. Improved microscopic nuclear level densities within the Hartree-Fock-Bogoliubov plus combinatorial method. Phys. Rev. C. 2008; 78: 064307.
[12] DITRÒI, TARKANYI F, TAKACS S, HERMANNE A. Activation cross-sections of proton induced reactions on vanadium in the 37-65 MeV energy range. Nuclear Inst. and Methods in Physics Research B. 2016; 381: 16-28.