Calibración energética de un detector Timepix basado en GaAs:Cr con partículas alfa
Contenido principal del artículo
Resumen
El GaAs:Cr como material de avanzada para la detección de las radiaciones se encuentra en la mira de muchas instituciones científicas y tecnológicas en el mundo, como consecuencia de sus superiores propiedades y ventajas económicas. Los experimentos hechos en el Laboratorio de Problemas Nucleares Dzhelepov del Instituto Unificado de Investigaciones Nucleares para la calibración energética de un detector hibrido Timepix basado en GaAs:Cr con partículas alfa confirma que este dispositivo es capaz de registrar partículas en el rango energético de 3410 a 7687 keV. Se utilizó la simulación matemática para calcular la energía transmitida, haciendo posible la calibración experimental con el uso de Mylar como absorbente. Utilizando la calibración del detector hecha con los rayos X característicos de algunos materiales blanco y empleando un procedimiento de ajuste en dos pasos fue determinada la relación entre la energía de los fotones y los conteos TOT registrados por el detector. Se realizó la calibración energética con partículas alfa de acuerdo con una función lineal y se verificó con la medición de la línea del 218Po del radón en aire.
Detalles del artículo
Cómo citar
Ramos, D., Smolyanskiy, P., Leyva, A., Zhemchugov, A., & Torres, A. G. (2019). Calibración energética de un detector Timepix basado en GaAs:Cr con partículas alfa. Nucleus, (64). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/660
Sección
Ciencias Nucleares
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
Citas
[1] LLOPART X, BALLABRIGA R, CAMPBELL M, et. al. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl. Instrum. Methods Phys A. Res. 2007; 581: 485-494.
[2] AYZENSHTAT GI, BUDNITSKY DL, KORETSKAYA OB, et al. GaAs resistor structures for X-ray imaging detectors. Nucl. Instrum. Methods Phys A. Res. 2002; 487: 96-101.
[3] TYAZHEV AV, BUDNITSKY DL, KORETSKAYA OB, et. al. GaAs radiation imaging detectors with an active layer thickness up to 1 mm. Nucl. Instrum. Methods Phys A. Res.2003; 509: 34-39.
[4] HAMANN E, CECILIA A, ZWERGER A, et. al. Characterization of photon counting pixel detectors based on semi-insulating GaAs sensor material. J. Phys.: Conf. Ser. 2013; 425: 062015.
[5] TIKU S & BISWAS D. Integrated circuit fabrication technology. Florida: CRC Press Taylor & Francis Group, 2016. ISBN: 978-981-4669-31-3.
[6] SHI W & XIE G. Influence of EL2 deep level on photoconduction of semi-insulating GaAs under ultrashort pulse photo injection. Laser Physics Letters. 2016; 13(2): 341- 376.
[7] SRI. 2016 [consulted on April 10th 2017]. Available in: Available in: http://www.sourceray.com/oem .
[8] PixetProSOFTWARE version 1.4.4.504 [consulted on April 12th 2017]. Available in: Available in: http://www.advacam.com/en/products .
[9] ZIEGLER JF, ZIEGLER MD & BIERSACK JP. SRIM - The stopping and range of ions in matter. NIM B. 2010; 268(11-12): 1818-1823.
[10] BUTLER A, BUTLER B, BELL S, et. al. Measurement of the energy resolution and calibration of hybrid pixel detector with GaAs: Cr sensor and Timepix Readout Chip. Physics of Particles and Nuclei Letters. 2015; 12(1): 59-73.
[11] JAKUBEK J . Precise energy calibration of pixel detector working in time-over-threshold mode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011; 633(1): 262-266.
[12] BECKHOFF B, KANNGIEBER B, LANGHOFF N, et. al. Handbook of practical X-ray fluorescense analysis. Berlin: Springer, 2006. ISBN: 103-540-28603-9.
[13] TABLE OF RADIOACTIVE ISOTOPES. 2017 [consulted on May 25th 2017]. Available in: Available in: http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA .
[2] AYZENSHTAT GI, BUDNITSKY DL, KORETSKAYA OB, et al. GaAs resistor structures for X-ray imaging detectors. Nucl. Instrum. Methods Phys A. Res. 2002; 487: 96-101.
[3] TYAZHEV AV, BUDNITSKY DL, KORETSKAYA OB, et. al. GaAs radiation imaging detectors with an active layer thickness up to 1 mm. Nucl. Instrum. Methods Phys A. Res.2003; 509: 34-39.
[4] HAMANN E, CECILIA A, ZWERGER A, et. al. Characterization of photon counting pixel detectors based on semi-insulating GaAs sensor material. J. Phys.: Conf. Ser. 2013; 425: 062015.
[5] TIKU S & BISWAS D. Integrated circuit fabrication technology. Florida: CRC Press Taylor & Francis Group, 2016. ISBN: 978-981-4669-31-3.
[6] SHI W & XIE G. Influence of EL2 deep level on photoconduction of semi-insulating GaAs under ultrashort pulse photo injection. Laser Physics Letters. 2016; 13(2): 341- 376.
[7] SRI. 2016 [consulted on April 10th 2017]. Available in: Available in: http://www.sourceray.com/oem .
[8] PixetProSOFTWARE version 1.4.4.504 [consulted on April 12th 2017]. Available in: Available in: http://www.advacam.com/en/products .
[9] ZIEGLER JF, ZIEGLER MD & BIERSACK JP. SRIM - The stopping and range of ions in matter. NIM B. 2010; 268(11-12): 1818-1823.
[10] BUTLER A, BUTLER B, BELL S, et. al. Measurement of the energy resolution and calibration of hybrid pixel detector with GaAs: Cr sensor and Timepix Readout Chip. Physics of Particles and Nuclei Letters. 2015; 12(1): 59-73.
[11] JAKUBEK J . Precise energy calibration of pixel detector working in time-over-threshold mode. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2011; 633(1): 262-266.
[12] BECKHOFF B, KANNGIEBER B, LANGHOFF N, et. al. Handbook of practical X-ray fluorescense analysis. Berlin: Springer, 2006. ISBN: 103-540-28603-9.
[13] TABLE OF RADIOACTIVE ISOTOPES. 2017 [consulted on May 25th 2017]. Available in: Available in: http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA .