XPS de nanoestructuras de carbono obtenidas por descarga de arco de electrodos de grafito sumergidos en agua

Contenido principal del artículo

Daniel Codorniu Pujals
Dairon Rodríguez Garcés
Olimpia Arias de Fuentes
Luis F. Desdín García

Resumen

Se utilizó la Espectroscopia Fotoelectrónica de Rayos X (XPS) para estudiar nanoestructuras de carbono obtenidas por descarga de arco de electrodos de grafito sumergidos en agua. Se observó que los espectros de las muestras tomadas de la fracción flotante de los productos de la síntesis, compuestas básicamente por nano-cebollas de carbono (CNO), presentan diferencias con los de las muestras obtenidas del precipitado, que contiene una mezcla de CNOs y nano-tubos de carbono de capas múltiples (MWCNT). Estas diferencias están asociadas con la presencia de átomos de carbono localizados en orbitales con diferente grado de hibridación (sp2-sp3), lo que a su vez se relaciona con las diferentes curvaturas de los planos de carbono en las nanoestructuras presentes en la muestras. Los resultados obtenidos indican que XPS puede ser un elemento importante en la caracterización de los productos obtenidos por el citado método de síntesis.

Detalles del artículo

Cómo citar
Codorniu Pujals, D., Rodríguez Garcés, D., Arias de Fuentes, O., & Desdín García, L. F. (2019). XPS de nanoestructuras de carbono obtenidas por descarga de arco de electrodos de grafito sumergidos en agua. Nucleus, (64). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/658
Sección
Ciencias Nucleares

Citas

[1] YAO J, SUN Y, YANG M, DUAN Y, Chemistry, physics and biology of graphene-based nanomaterials: new horizons for sensing, imaging and medicine. J. Mater. Chem. 2012; 22: 14313-14329.
[2] JARIWALA D, SANGWAN V, LAUHON L, et. al. Carbon nanomaterials for electronics, optoelectronics, photovoltaics and sensing. Chem. Soc. Rev. 2013; 42: 2824-2832.
[3] SANO N, WANG H , ALEXANDROU I, CHHOWALLA M , TEO K , AMARATUNGA G. Properties of carbon onions produced by an arc discharge in water. Journal of Applied Physics. 2002; 92: 2783-2788.
[4] BORGOHAIN R, YANG J, SELEGUE J, KIM D. Controlled synthesis, efficient purification, and electrochemical characterization of arc-discharge carbon nano-onions. Carbon. 2014; 66: 272-284.
[5] CODORNIU D, ARIAS O, DESDÍN L, et. al. Raman spectroscopy of polyhedral carbon onions. Applied Physics A. 2015; 120: 1339-1345.
[6] DARIAS J, HERNÁNDEZ L, CODORNIU D, et. al. Carbon nanostructures obtained by underwater arc discharge of graphite electrodes: Synthesis and characterization. Proceedings of the XV Workshop on Nuclear Physics and IX International Symposium on Nuclear and Related Techniques WONP-NURT’2015. 2015 (arXiv:1502.04062 [condmat.mtrl-sci] )
[7] UGARTE D. Onion-like graphitic particles. Nature. 1995; 33: 163-167.
[8] CABIOC’H T, RIVIERE J., DELAFOND J, A new technique for fullerene onion formation. J. Mater. Sci. 1995; 30: 4787-4792.
[9] BUTENKO Y, KRISHNAMURTHY S, CHAKRABORTY A, et. al. Photoemission study of onion like carbons produced by annealing nanodiamonds. Physical Review B. 2005; 71(7): 075420-1-10-
[10] HE C, ZHAO N, SHI C, et. al. Carbon onion growth enhanced by nitrogen incorporation. Scripta Materialia. 2006; 54: 1739-1743.
[11] MOULDER J, STICKLE W, SOBOL P, BOMBEN K. Hanbook of X-Ray Photoelectron Spectroscopy. Minnesota: Perkin-Elmer Co, 1992.
[12] YANGA D, VELAMAKANNIA A, BOZOKLUB G , et. al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon, 2009; 47: 149-152.

Artículos más leídos del mismo autor/a