Simulación y evaluación de la técnica de sustracción del borde de absorción en un sistema radiográfico espectrométrico destinado al estudio del patrimonio cultural
Contenido principal del artículo
Resumen
En este trabajo se utilizó la simulación matemática del transporte de los fotones en la materia para evaluar las potencialidades de un nuevo sistema radiográfi co destinado al estudio de obras del patrimonio cultural. Este sistema emplea una fuente de rayos X no monocromática y mide a nivel de píxel el espectro transmitido a través del objeto en estudio con un detector espectrométrico. El procesamiento del conjunto de datos obtenidos permite la construcción de imágenes con contraste realzado para ciertos elementos. En el presente trabajo se enfatizó en el uso de la técnica de sustracción del borde de absorción para el procesamiento de las imágenes. Los resultados de las simulaciones resultaron consistentes con las mediciones experimentales.
Detalles del artículo
Cómo citar
Leyva Pernía, D., Cabal Rodríguez, A. E., & Van Espen, P. (1). Simulación y evaluación de la técnica de sustracción del borde de absorción en un sistema radiográfico espectrométrico destinado al estudio del patrimonio cultural. Nucleus, (50). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/554
Sección
Ciencias Nucleares
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista. Bajo esta licencia el autor será libre de:
- Compartir — copiar y redistribuir el material en cualquier medio o formato
- Adaptar — remezclar, transformar y crear a partir del material
- El licenciador no puede revocar estas libertades mientras cumpla con los términos de la licencia
Bajo las siguientes condiciones:
- Reconocimiento — Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
- NoComercial — No puede utilizar el material para una finalidad comercial.
- No hay restricciones adicionales — No puede aplicar términos legales o medidas tecnológicas que legalmente restrinjan realizar aquello que la licencia permite.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).
La Revista Nucleus solo aceptará contribuciones que no hayan sido previamente publicados y/o procesados, por otra publicación. Cualquier violación ese sentido será considerada una falta grave por parte del autor principal lo cual será objeto valoración por parte del Consejo Editorial, el cual dictaminará al respecto.
Citas
1. AIBÉO CL, GOFFIN S, SCHALM O, et. al. Micro-Raman analysis for the identifi cation of pigments from 19th and 20th century paintings. J. Raman Spectrosc. 2008; 39(8): 1091–1098.
2. ALVAREZ RE, MACOVSKI A. Energy-selective Reconstructions in X-ray computerized Tomography. Phys. Med. Biol. 1976; 21(5): 733-744.
3. LEHMANN LA, ÁLVAREZ RE, MACOVSKI A, BRODY WR. Generalized image combinations in dual KVP digital radiography. Med. Phys. 1981; 8(5): 659-667.
4. BALDELLI P, BONIZZONI L, GAMBACCINI M, et. al. Application of the K-edge X-ray technique to map pigments of art paintings: Preliminary results. IL NUOVO CIMENTO. 2006; 29C (6): 663–672.
5. KRUG K, DIK J, DEN LEEUW M et. al. Visualization of pigment distributions in paintings using synchrotron K-edge imaging. Appl. Phys. A. 2006; 83(2): pp. 247–251.
6. SCHALM O, CABAL AE, VAN ESPEN P, et. al. Improved radiographic methods for the investigation of paintings using laboratory and synchrotron X-ray sources. J Anal Atom Spectr. 2011; 26: 1068-1077.
7. CABAL AE, LEYVA D, SCHALM O, et. al. Possibilities of energy-resolved X-ray radiography for the investigation of paintings. Anal. Bioanal. Chem. 2011. DOI: 10.1007/s00216-011-5230-x.
8. HARDING G, HARDING E. Compton scatter imaging A tool for historical exploration. Appl Rad and Isot. 2010; 68(6): 993– 1005.
9. TROJEK T, CECHAK T, MUSILEK L. Monte Carlo simulations of disturbing effects in quantitative n-situ X-ray fl uorescence analysis and microanalysis. Nucl Instrum and Meth Phys Res A. 2010; 619: 266– 269.
10. HENDRICKS JS, MCKINNEY GW, TRELLUE HR, et. al. MCNPXTM Version 2.6.B. [software informático]. Los Alamos National Laboratory report. LA-UR-06-3248. 2006.
11. VAN GRIEKEN R, MARKOVIC A. Handbook of X-ray spectrometry. New York: Marcel Dekker, 2002.
2. ALVAREZ RE, MACOVSKI A. Energy-selective Reconstructions in X-ray computerized Tomography. Phys. Med. Biol. 1976; 21(5): 733-744.
3. LEHMANN LA, ÁLVAREZ RE, MACOVSKI A, BRODY WR. Generalized image combinations in dual KVP digital radiography. Med. Phys. 1981; 8(5): 659-667.
4. BALDELLI P, BONIZZONI L, GAMBACCINI M, et. al. Application of the K-edge X-ray technique to map pigments of art paintings: Preliminary results. IL NUOVO CIMENTO. 2006; 29C (6): 663–672.
5. KRUG K, DIK J, DEN LEEUW M et. al. Visualization of pigment distributions in paintings using synchrotron K-edge imaging. Appl. Phys. A. 2006; 83(2): pp. 247–251.
6. SCHALM O, CABAL AE, VAN ESPEN P, et. al. Improved radiographic methods for the investigation of paintings using laboratory and synchrotron X-ray sources. J Anal Atom Spectr. 2011; 26: 1068-1077.
7. CABAL AE, LEYVA D, SCHALM O, et. al. Possibilities of energy-resolved X-ray radiography for the investigation of paintings. Anal. Bioanal. Chem. 2011. DOI: 10.1007/s00216-011-5230-x.
8. HARDING G, HARDING E. Compton scatter imaging A tool for historical exploration. Appl Rad and Isot. 2010; 68(6): 993– 1005.
9. TROJEK T, CECHAK T, MUSILEK L. Monte Carlo simulations of disturbing effects in quantitative n-situ X-ray fl uorescence analysis and microanalysis. Nucl Instrum and Meth Phys Res A. 2010; 619: 266– 269.
10. HENDRICKS JS, MCKINNEY GW, TRELLUE HR, et. al. MCNPXTM Version 2.6.B. [software informático]. Los Alamos National Laboratory report. LA-UR-06-3248. 2006.
11. VAN GRIEKEN R, MARKOVIC A. Handbook of X-ray spectrometry. New York: Marcel Dekker, 2002.