Biomonitoreo de la contaminación atmosférica en La Habana durante la campaña 2004-2005

Contenido principal del artículo

Juan Estévez Alvarez
Alfredo Montero Alvarez
Diana López Sánchez

Resumen

Para evaluar la calidad del aire en La Habana se utilizó como bioindicador una especie de liquen epífi to (physcia alba sp.) que crece sobre Palma real (Roystonea regia). Se colectó un total de 225 muestras de líquenes en 181 sitios seleccionados de acuerdo con las condiciones de contaminación por tráfi co y actividades industriales. Se determinaron las concentraciones de 15 elementos (Na, Mg, Al, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Cd and Pb), empleando espectrofotometría de absorción atómica, fluorescencia de rayos X por refl exión total y voltametría de redisolución anódica. Se aplicaron métodos estadísticos (componentes principales) a los resultados analíticos y se obtuvieron y seleccionaron varios factores. Por último se presentan mapas con los perfiles de distribución elementales y de factores y su posible correlación con distintas fuentes de contaminación.

Detalles del artículo

Cómo citar
Estévez Alvarez, J., Montero Alvarez, A., & López Sánchez, D. (1). Biomonitoreo de la contaminación atmosférica en La Habana durante la campaña 2004-2005. Nucleus, (50). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/553
Sección
Ciencias Nucleares

Citas

1. Validation and application of plants as biomonitors of trace element atmospheric pollution, analyzed by nuclear and related techniques. Report of on the Second Research Co-ordination Meeting. NAHRES-63. Vienna: IAEA, 2001. 218 p.
2. WOLTERBEEK B. Large scaled biomonitoring of trace elements air pollution: goals and approaches. Radiat Phys and Chem. 2001; 61(3-6): 323-327.
3. GONZÁLEZ CM, ORELLANA L, CASANOVAS SS, PIGNATA ML. Environmental conditions and chemical response of a transplanted lichen to an urban area. J Environ Manag. 1998; 53(1): 73-81.
4. HAWKSWORTH DL. The fungal partner. Handbook of lichenology. Vol. III. Boca Ratón: CRC Press, 1988. p. 35-38.
5. JAMES PW. The effect of air pollutants other than hydrogen fluoride and sulphur dioxide on lichens. In: Air Pollution and Lichens. 1973. p.143-75389
6. LAAKSOVIRTA K., OLKKONEN H. Epyphytic lichen vegetation and element contents of Hypogimnia physodes and pine needles examined as indicators of air pollution at Kokkola, W. Finland. Ann. Bot. Fennici.
1977; 14: 112-130.
7. FOLKENSON L. Interspecies calibration of heavy-metal concentrations in nine mosses and lichens: Applicability to deposition measurements. Water, Air and Soil Pollution. 1979; 11: 253-260.
8. MARTIN MH, COUNGHTREY PJ. Biological Monitoring of Heavy Metal Pollution. London: Applied Science Publishers. 1982; 475 p.
9. PUCKETT KJ. Bryophytes and lichens as monitors of metal deposition. Lichens, Bryophytes and Air Quality. Bibliotheca Lichenologica. 1988; 30: 231-267.
10. PUCKETT KJ, NIEBOER E, GORZYNSKI MJ, RICHARDSON DHS. The uptake of metal ions by lichens: A modifi ed ion-exchange process. New Phytol. 1973; 72: 329-342.
11. MARKERT B. Plants as Biomonitors. Indicators for Heavy Metals in the Terrestrial Environment. Weinheim: VCH, 1993. p. 193-257.
12. RUHLING A. Atmospheric Heavy Metal Deposition in Europe – Estimation Based on Moss Analysis. NORD 1984:9. Copenhagen: NORDIC Council of Ministers, 1994. p. 53.
13. WANNAZ ED, PIGNATA ML. Calibration of Four Species of Tillandsia as Air Pollution Biomonitors. Journal of Atmospheric Chemistry. 2006; 53: 185-209.
14. WANNAZ ED, CARRERAS H, PÉREZ C. Assessment of heavy metal accumulation in two species of Tillandsia in relation to atmospheric emission sources in Argentina. Sci Total Environ. 2006; 36(1-3): 267-278.
15. RUSU AM, JONES GC, CHIMONIDES PD, PURVIS OW. Biomonitoring using the lichen Hypogymnia physodes and bark samples near Zlatna, Romania immediately following closure of a copper ore-processing plant. Environ Poll. 2006; 143: 81-88.
16. CARRERA HA, PIGNATA ML. Effects of the heavy metals Cu2+, Ni2+, Pb2+, and Zn2+ on some physiological parameters of the lichen Usnea amblyoclada. Ecotoxicology and Environmental Safety. 2007; 67: 59-66.
17. GODINHO RM, WOLTERBEEK HTH, VERBURG T, FREITAS MC. Bioaccumulation behavior of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environ Poll. 2008; 151(2): 318-325.
18. PINHO P, AUGUSTO S, MÁGUAS C, et. al. Impact of neighbourhood land-cover in epiphytic lichen diversity: Analysis of multiple factors working at different spatial scales. Environ Poll. 2008; 151(2): 414-422.
19. MONTERO ALVAREZ A, et. al. Multi-elemental determination in lichens collected from Havana city. Proceedings NURT-2001. Havana, Cuba. 22-26 de octubre 2001.
20. MONTERO A, ESTÉVEZ JR, IGLESIAS H, et. al. Lichen based biomonitoring of air quality in Havana City west side. J of Radioanal and Nucl Chem. 2006; 270(1): 63-67.
21. MONTERO A, ESTÉVEZ JR, PADILLA R, LÓPEZ D. Analytical performance of some methods for the determination of trace elements in lichens used as air quality assessment. J Radioanal Nucl Chem. 2009; 281(3): 569-575.
22. ISO 8466-1. Water quality-calibration and evaluation of analytical methods and estimation of performance characteristics. Part 1: Statistical evaluation of the linear calibration function. 1990.
23. VOGELGESANG J, et. al. Limits of detection, identifi cation and determination: statistical approach for practitioner. Accred. Qual. Assur. 1998; 3(6): 242-249.
24. BENNETT J, WETMORE C. 16-Year trends in elements of lichens at Theodore Roosevelt National Park, North Dakota. Sci Total Environ. 2000; 263(1-3): 231-241.
25. NRIAGU JO. Natural versus anthropogenic emissions of trace metals to the atmosphere. In: Control and Fate of Atmospheric Trace Metals. NATO ASI. Series Vol. 268. The Netherlands: Kluwer Academic Publishers, 1989. p. 3-13.

Artículos más leídos del mismo autor/a