Determinación del grado de enriquecimiento del combustible nuclear del conjunto subcrítico del INSTEC por espectrometría gamma

Contenido principal del artículo

José L . Borrell Muñoz
Neivy López Pino

Resumen

Se analiza el grado de enriquecimiento del uranio del combustible nuclear usado en el Conjunto Subcrítico del InSTEC mediante espectrometría gamma de bajo fondo. El enriquecimiento se calcula tanto por vía absoluta, simulando la eficiencia del detector por Monte Carlo, como por un procedimiento iterativo que no requiere del empleo de muestras estándares. Los resultados confirman que el combustible nuclear es uranio natural sin ningún grado de enriquecimiento adicional.

Detalles del artículo

Cómo citar
Borrell Muñoz, J. L. ., & López Pino, N. (1). Determinación del grado de enriquecimiento del combustible nuclear del conjunto subcrítico del INSTEC por espectrometría gamma. Nucleus, (45). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/522
Sección
Salvaguardias

Citas

[1] NIR-EL Y. Isotopic analysis of uranium in U 3 O 8 by passive gamma-ray spectrometry. Applied Radiat. Isot. 2000; 52(3) 753-757.
[2] LUCA A. Experimental determination of the Uranium enrichment ratio. Rom. Jour. Phys. 2008; 53 (1-2): 35-39.
[3] SHOJI M, HAMAJIMA Y, TAKATSIKA K , et. al. A convenient method for discriminating between natural
and depleted uranium by g-ray spectrometry. Applied Radiat. Isot. 2001; 55(2): 221-227.
[4] KOROB RO, BLASIYH NUÑO GA. A simple method for the absolute determination of uranium enrichment by
high-resolution g spectrometry. Applied Radiat. Isot. 2006; 64(5): 525-531.
[5] Documentación Técnica del Conjunto Subcritico. Laboratorio del Conjunto Subcritico del InSTEC, 1968 (en Ruso).
[6] FIRESTONE RB. Table of Isotopes. Eighth edition. Wiley Interscience, 1996.
[7] SCHMORAK MR. Nuclear Data Sheets Update for A =235. Nuclear Data Sheets. 1993; 69(2): 375-428.
[8] AKOVALI YA. Nuclear Data Sheets for A = 234. Nuclear Data Sheets. 1994; 71(1): 181-259.
[9] VIDMAR T, AUBINEAU-LANIECE I, ANAGNOSTAKIS MJ, et. al. An intercomparison of Monte Carlo codes used
in gamma-ray spectrometry. Applied Radiat. Isot. 2008; 66(6-7): 764-768.
[10] LEPY MC, ALTZITZOGLOU T, ARNOLD D, et. al. Intercomparison of efficiency transfer software for gamma-ray spectrometry. Applied Radiat. Isot. 2001; 55(4): 493-503.
[11] GILMORE G, HEMINGWAY J. Practical Gamma-ray Spectrometry. Wiley, Chichester, 1995, pp. 137-138,
148-159.
[12] PELOWITZ DD. MCNPX TM User's manual. Version 2.5.0. Report LA-CP-05-0369. Los Alamos National
Laboratory. 2005.
[13] RÓDENAS J, MARTINAVARRO A, RIUS V. Validation of the MCNP code for the simulation of Ge-detector
calibration. Nucl. Inst. and Meth. in Phys. Res. 2000; A450(1): 88-97.
[14] KARAMANIS D. Efficiency simulation of HPGe and Si(Li) detectors in ã- and X-ray spectroscopy. Nucl. Inst.
and Meth. in Phys. Res. 2006; A505(1-2): 282-285.
[15] MARQUES SALGADO C, CONTI CC, BECKER PHB. Determination of HPGe detector response using MCNP5 for 20-150 keV X-rays. Applied Radiat. Isot. 2006; 64(6): 700-705.
[16] RODENAS J, GALLARDO S, BALLESTER S, et. al. Application of the Monte Carlo method to the analysis
of measurement geometries for the calibration of a HP Ge detector in an environmental radioactivity laboratory. Nucl. Instr. and Meth. B. 2007; 263(1). doi:10.1016/j.nimb. 2007.04.210.
[17] SAEGUSA J. CREPT-MCNP code for efficiency calibration of HPGe detectors with the representative point method. Applied Radiat. Isot. 2008; 66(6-7): 774-779.
[18] MOREL J, HILL C, BICKEL M, et. al. Results from the international evaluation exercise for uranium enrichment measurements. Applied Radiat. Isot. 2000; 52(3): 509-522.