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INTRODUCTION

Resonances are one of the most interesting
phenomena in many fields of physics which lead
to important findings. In the quantum world,
systems with electrons, hadrons or atoms provide
enormous amount of data on resonances, leading
to the discovery of new states of matter.

In low energy nuclear physics, resonances are
one of the most dominating aspects and elastic
and inelastic cross sections display a series or
even isolated very narrow peaks of few eV. Recent
findings on exotic nuclei [1], added to the list many
new examples, which are important not only as
direct data on resonances, but also for the
production of new isotopes in regions of the
nuclear chart which were «terra incognita», until
recently.

Proton radioactivity  for example, corresponds to
decay of an extremely narrow resonant state of the
proton in the field of the daughter nucleus, in
nuclei that are beyond the proton drip-line. The
observables that are measured experimentally are
the energy of the emitted proton and the half-life for
decay of the resonance. Through the reaction
mechanisms for their emission, it is possible to
interpret the experimental data and to learn about
the structure of nuclei that have these resonance
states. Therefore, in order to sort out the nuclear
structure properties of the decaying nuclei from
kinematics, very precise calculations of the
properties of the resonance states have to be
performed, in order to be able to reproduce the
experimental data.

In intermediate energy collisions, resonances are
also seen but have in general quite large widths,
typically of order of 100 MeV, specially when they
are related to mesonic excitations in the nucleus.

In recent times, great attention is given to
mesoscopic devices [2], since they open a wide
range of new experimental possibilities, and
provide important technologic applications. With
recent developments in microelectronics it is
possible to create in the laboratory almost two
dimensional wave guides where the motion of the
electrons can exhibit typical quantum effects.

The geometry of these systems, such as bends,
corners or crosses, has a strong influence on the
conduction properties of the electrons, since it can
create the appropriate conditions required for the
formation of bound states or resonances in the
conduction channels.

Therefore it is quite important, in view of
technologic applications, to have an accurate
description of the relation between geometry and
observables. In a theoretical perspective, this
information  emerges naturally from the solution of
a multichannel eigenvalue problem.

The calculation of bound states and resonances
and their behaviour in these domains of physics,
will be the purpose of the present work.

Resonances in coupled channel problems

The interpretation of the experimental features
described in the previous section, must take into
account the unstable character of the resonance
states. In principle, this should be done by solving
the time-dependent Schrödinger equation. One
can transform instead, the time dependent
process that describes the evolution of the
decaying states into a stationary problem, by
imposing to the wave functions outgoing boundary
conditions. This provides not only all the bound
and virtual states, but also the resonances, that
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correspond to states with complex energies that
have negative imaginary parts, named in general
as Gamow states. If the absolute values of those
imaginary parts are small, one can associate the
corresponding eigenstates with ¨physical¨
resonances observable in real situations. The real
part of the energy represents the position of the
resonance and the imaginary part is proportional
to the width ¨Γ¨, that is, E = E – i Γ/2. The states
with large imaginary parts have only a
mathematical meaning, and no physical
counterpart. They are just a consequence of the
finite range of the interaction, and depend strongly
on its value [3].

The study of realistic systems requires adequate
interactions, that always lead to the solution of
complicated coupled channel equations.  Let  us
consider for example a deformed nucleus where
one of the nucleons is not bound, but is in a
resonance state. The system is described by the
radial Schrödinger equation for the deformed
mean field felt by the nucleons moving in the
nucleus, whose solution corresponds to the single
particle resonance state. The equation should
then be solved [4] imposing regularity at the origin
and outgoing wave boundary conditions at large
distance for each partial wave, as required for
resonances,

lim  r  ∞   R ljm (r)  =  N ljm  (G l (kr) + i F l (kr) ),      (1)

to find the resonance states.  The functions F and
G are the regular and irregular Coulomb functions,
k =    {2 μ E/h2} is the wave number, and N the
normalization constant.

Realistic representations of the nuclear mean
field, take into account deformed Coulomb and
spin-orbit interactions, and even if the system has
axial symmetry, the solution of the coupled channel
equations for such interactions, is complicated.
The deformed spin-orbit part of the potential,
represented by a first order derivative term, brings
extra difficulties to the numerical solution of the
equation, and some mathematical
transformations are needed as discussed in
reference [4] to have stable and very precise
solutions needed for comparison with the
experimental data.

It is very interesting to study the behaviour of these
resonances in the complex plane, as a function of
the deformation parameter β. This is shown in
figure 1 for  the exotic nucleus at the proton drip-
line, 113Cs. A zero value for the deformation,
corresponds to a spherical configuration for the
nucleus, and the states are specified by the usual
shell model quantum numbers [lj] and parity.
Switching on β, the total angular momentum is not
any more a conserved quantity, but his projection
¨m¨ on the z-axis is a conserved one. Varying β, the
states split into their ¨m¨ components, and it is
possible to study their energy dependence with
deformation.

There are drastic changes of the position in the
plane, according to the value adopted for the
deformation. Resonances can attract or repel each
other, or even become bound states. This has very
interesting consequences in a real system, which
will have a well defined value for β. In a specific
nuclear isotope, a certain deformation can still
bind a nucleon, unbound for other value of β, or
make a resonance very narrow, which could be an
experimental observable.

Generically, when the angular momentum
projection m is small many partial waves may
contribute to build up the resonances, and a
strong interaction among them can arise leading
to complicated patterns in the trajectories induced
by the deformation parameter in the complex
energy plane.

Resonances can even cross each other, at variance
with the behaviour of bound states that satisfy the
level repulsion theorem of von Neumann and
Wigner [5], and will never cross. Examples of such
¨attractions¨ can be seen in figure 2, where the
trajectory of all states available for 113Cs with m = 1/
2- are presented in the energy plane as a function of
deformation. For instance, the trajectories coming
from the shells f5/2 and h11/2, approach each other
very rapidly as β increases. In particular, the
variation of energy per unity of deformation is quite
large for positive deformations with β between 0.25
and 0.30.

Bound states and resonances in mesoscopic
systems

Similar studies as discussed in the previous
section, can be done for systems where the
geometry that imposes specific boundary
conditions. To illustrate this point, we consider two
straight quantum wires of the same width, which
can communicate through a window in their
common boundary, as shown in figure 3, and
study the behaviour of bound states and
resonances when the window size is varied. Such
a system has already been considered in
reference [6], where bounds on the number of
bound states and a corresponding scaling law
with the window size were found. From the
geometry of the problem, one expects a
dependence upon only one parameter, such as
the ratio «a» between the window size and the
width of one of the wires. Problems of this type
occur frequently in physics, where ¨a¨ has the
meaning of strength of an interaction.

When solving the multichannel problem, one
generally exploits as much as possible the
symmetry properties of the problem under
consideration. In the present case one takes into
account the right-left mirror symmetry with respect
to the center of the window, plus the up-down
symmetry with respect to the x –axis. This implies
for the bound and scattering wave functions,
definite parity properties, under the transformation
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Figure 1. Real part of the energy as a function of the deformation β of all deformed neutron states coming from the
spherical level j 15/2 - in 113Cs. The corresponding ¨m¨ values are given. For states that lie in the continuum two lines are
drawn, and the distance between them (shadowed area) correspond to half of the resonance width.

Figure 2. Complex energies of negative parity states with m = 1/2 in 113Cs, originated from all spherical levels of the major
shells N = 7, 9 as a function of β with -0.5 <  β  < 0.5. Each spherical state is defined by the quantum numbers lj and
correspond to the larger dots. The triangles (circles) correspond to positive(negative) values of β in steps of 0.05.
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x    -x  or   y    -y. The solutions, antisymmetric with
respect to the x -axis have to vanish at the window,
so that the corresponding eigenspectrum is trivial,
consisting in the eigenvalues of two separate
strips, with no bound states, but only scattering
states. For the solutions invariant with respect to
the y      -y, transformation, the left-right symmetry
can be exhibited by resorting to wave functions
with definite parity properties

ψ± (x,y), where ψ± (x,y) = ψ± (- x,y),

As a consequence, one can limit oneself to
solutions for x  > 0 only, with the Dirichlet boundary
condition that they vanish for x = 0 for odd parity, or
the Neumann boundary condition implying that the
first derivative has to vanish at the origin, for the
even case. Moreover, the up-down symmetry of the
solutions implies that one can limit oneself to the
first quadrant.

A particle propagating in the device of figure 3, is
confined within the wires, and the wave function
has to vanish along the walls. This restriction
corresponds to Dirichlet boundary conditions,
except in the open window region. Consequently,
the wave number in the transverse direction k1 is
quantized, leading to standing waves ¨x(y)¨ in this
direction, which can be used as basis functions to
expand the total wave function ¨ψ± (x,y)¨. In the
following, we assume that there are N transverse
modes in each duct.

In the outer region outside the window the wave
function has to fulfill outgoing wave boundary
conditions, in all channels, namely

 ψ± (x,y)  =  Σ j  P j± (x,y)   exp { ik´j  (x-l) }  x j (y)      (2)

where the longitudinal wave number k´ is a
positive pure imaginary number for a bound state,
implying the usual exponential decreasing
behaviour. The transverse eigenfunctions have the
form,

 X j (y)     {2 / d sin(j π/d y)}                                     (3)

When a bound states occurs, the wave function is
localized mainly inside the window, and there is no
incoming wave. In these circumstances all
channels remain closed, The solution of the
coupled channel Schrödinger equations, reduce to
the solution of a set of the homogeneous
equations, and we can refer to reference [7] for
details. We solved the secular equation for
different values of the size parameter a = l/d. For
convenience, the width of the wave guide was
used as the basic scale parameter, and all
quantities were measured in relation to it. Thus,
we use units such that  h2 / 2 μ =1, and express the
total energy E in units of (π/d) 2. In principle, the
secular equation ought to be solved for an infinite
number of basis functions; however, from a
practical point of view, one has to resort to
truncations, but the convergence of our
calculations was checked up. Bound states are
located below the continuum threshold, and are
contained in the energy interval 1/4 < E < 1.

In figure 4,  the energy  E is plotted as a function
of the size parameter in correspondence to
solutions of the secular equation for both the
even and the odd case.  Both anti-bound and
bound states occur, according to the negative or
positive sign, respectively, of k. They are
represented by dashed and full lines,
respectively. With the window closed, one has two
separate strips, with a purely continuous
spectrum, starting at E = 1, k = 0. When the
window opens up a positive-parity bound state
appears, that is k > 0, starting from the upper
edge of the bound-state region E = 1. The bound
state pole moves with increasing ¨a¨ towards the
asymptotic limit of a single wire with width 2d.
This gives an energy E = 1/4, corresponding to
the minimum energy available in the transverse
mode, the associated closed channel wave
number being k =    {3}/2.

The role played by bound and virtual (or anti-bound)
states can be more clearly perceived in figure 5,
where the value of the momentum k corresponding
to a pole is plotted as a function of ¨a¨. The first odd

Figure 3. Two separate conducting strips of width d communicating through a common window of length 2 l.

 ← ←

←
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solution appears as a virtual state in the lower k-
plane, k < 0. It is associated to a wave function
which grows exponentially as x     ± ∞. For a = 0.7
the solution of the secular equation changes sign,
and one gets a bound state pole moving upward on
the positive imaginary axis of
the complex momentum plane. The following even
and odd poles move along regular and equally
spaced trajectories, in a quite symmetric fashion,
their number increasing monotonically with the
window width. From the numerical solution of the
secular equation, one in general observes for a
certain ¨a¨ several solutions, which can be grouped
into pairs of a bound and an anti-bound state.

They tend to gather near the asymptotic momentum
values ±    (3)/2, corresponding to a unique
waveguide of width 2d. With decreasing a, the bound
and virtual state of each pair will move towards each
other, colliding at a certain point shown in the figure
by a triangle. As in potential scattering theory, this
point corresponds to the threshold where a
resonance and an anti-resonance appear, moving
away in opposite directions of the complex k-plane.

For large ¨a¨, as ¨a¨ decreases, the poles
associated to the bound and anti-bound states

move slowly towards each other on the
imaginary k-axis, in correspondence to the flat
part of the trajectory in the (k,a) plane of figure
5. When the slope of the trajectory increases,
the two poles move faster on the imaginary
axis, and collide for a  = 1.3, at k = -0.3. For
decreasing ¨a¨, they move in the lower complex
momentum plane with increasing velocity,
along trajectories symmetric with respect to the
imaginary axis. As is well-known, the pole in the
fourth quadrant corresponds to a resonance,
whereas the pole in the third quadrant
represents an anti-resonance. The collision
points in the (k, a) plane approach the k = 0
value for very large ¨a¨.

From the previous discussion. one can observe
how the design of a specific mesoscopic system
can change the conduction properties in the
medium. In this context, it is very useful to obtain
accurate relations [7] between   the scale
parameters that characterize the system, and the
physical properties.  For example, functional
relations between the critical value of ¨a¨ at which a
new bound state emerges from the continuum,
and the number ¨n¨ of bound states, can be found
in reference [7].

Figure 4. Energy of the positive (+) and negative (-) parity bound states as a function of the size parameter a = l/d.
Energies are given in terms of (π/d) 2, so that the threshold is fixed at E = 1. Both bound (full lines) and virtual (dashed
lines) states appear with varying ¨a¨.

←



NUCLEUS, NO. 42, 2007

51

Ciencias Nucleares

Figure 5.  Motion of the bound state poles in the complex momentum plane for varying ¨a¨. The momentum ik for the
fundamental mode is plotted as a function of ¨a¨. Full lines represent the positive parity poles, whereas the dashed lines
refer to negative parity states. The triangles mark the points in the (k, a) plane where the virtual states evolving from a
bound state, with decreasing ¨a¨, collide with another virtual state. The full circles indicate the values of ¨a¨ for which a
bound state appears at threshold.

CONCLUSIONS

In this work,  properties of bound states and
resonances, were discussed in the context of
exotic nuclei and mesoscopic devices. The
complicated trajectories of resonances of
deformed nuclei were discussed, looking at the
complex energy plane and varying the
deformation parameter. In some cases
resonances could become bound states
although being wide over a large range of
deformation parameters, and turning abruptly to
narrow resonances at a given value of β. In others
instead, there are no β values for which they are
narrow, and may attract or repel each other. All
these features are being tested in experimental
facilities with exotic nuclei where the properties of
bound states, and half lives and branching ratios
of quasi-bound continuum states are measured
over a wide range of deformations.

We have considered the bound states supported
by two conducting strips communicating through a
common window. Our analysis  in the complex
momentum plane has put in evidence the
existence of resonances and both bound and
virtual states, according to solutions with a positive
or negative coefficient of the imaginary
momentum. The appearance and behaviour of

bound state poles for different values of the
window size was determined and asymptotic
relations were found for their behaviour.
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