Cálculo de la sección transversal de desplazamiento y la distribución de los DPA en detectores semiconductores de silicio amorfo hidrogenado en aplicaciones de imagenología digital médica

Contenido principal del artículo

Antonio Leyva Fabelo
Ibrahin Piñera Hernández
Katerin Shtejer Díaz
Yamiel Abreu Alfonso
Carlos Manuel Cruz Inclán

Resumen

Utilizando la aproximación de Mott-McKinley-Feshbach en el trabajo se calculó la dependencia de la sección transversal de desplazamiento para cada especie de átomo de la estructura del a-Si:H en los intervalos de energía típicos de los electrones secundarios generados por los rayos X empleados en aplicaciones de imagenología médica. Se observó que para energías de los electrones superiores a 1,52 keV son posibles los desplazamientos de átomos de hidrógeno, mientras que la energía umbral de desplazamiento de los átomos de silicio resultó de 126 keV. Estos resultados se compararon con los obtenidos para detectores similares pero fabricados de silicio cristalino. Con el empleo de la simulación matemática del transporte de la radiación en la materia se calculó el especto energético de los electrones secundarios con el objetivo de estimar el número de desplazamientos por átomos que tienen lugar en el dispositivo amorfo semiconductor en régimen de trabajo. La distribución espacial de los dpa en el volumen del detector, así como su comportamiento con la profundidad son presentados
y discutidos en el texto.

Detalles del artículo

Cómo citar
Leyva Fabelo, A., Piñera Hernández, I., Shtejer Díaz, K., Abreu Alfonso, Y., & Cruz Inclán, C. M. (1). Cálculo de la sección transversal de desplazamiento y la distribución de los DPA en detectores semiconductores de silicio amorfo hidrogenado en aplicaciones de imagenología digital médica. Nucleus, (41). Recuperado a partir de http://nucleus.cubaenergia.cu/index.php/nucleus/article/view/493
Sección
Ciencias Nucleares

Citas

[1] MOARES D. Advance solid state detector Technology for particle detection. 10th Workshop on Electronics for LHC and Future Experiments. Boston, 2004. 13-17 September.
[2] MCKINLEY WA, FESHBACH H. Phys. Rev. 1948; 74: 1759.
[3] CURR RM. Proc. Phys. Soc. A. 1955; 68: 156.
[4] TAKAHASHI M, KONAGAI M. Amorphous Silicon Solar Cells. London: North Oxford Academic Publisher Ltd, 1986.
[5] WEAST RC. Handbook of Chemistry and Physics. Boca Raton: Chemical Rubber Corp, 1998.
[6] KOSTESKI T. Tritiated Amorphous Silicon Films and Devices. Thesis for the degree of Doctor of Philosophy. University of Toronto. 2001.
[7] VAN SWAAIJ RACMM, ANNIS AD, SEALY BJ. J. Appl. Phys. 1997; 82 (10): 4800-4804.
[8] WEHRSPOHN RB, DEANE SC, FRENCH ID, et al. J. Appl. Phys. 2000; 87 (11): 144-154.
[9] SCHNEIDER U, SCHODER B. Amorphous Silicon and Related Materials. Singapore: World Scientific, 1988.
[10] MOLLER W. Appl Phys A. 1993; 56: 527.
[11] HACKLER WA, KIKUCHI CH. Study of Lituium mobility in ittadiated silicon. Technical Report ORA Project 04381, NASA. 1966.
[12] HIRAIWA A, KOBAYASHI T. J. Appl. Phys. 1991; 70: 309.
[13] TADA HY, CARTER JR, ANSPAUGH JRBE, DOWNING RG. Solar Cell Radiation. Handbook. Third Edition. JPL Publication, 1982; 82-69.
[14] HAN M, BENNETT JC, ZHANG Q, et al. Thin Solid Films. 2006; 514: 58-62.
[15] SUMMERS A, et al. Trans Nucl Sci. 1993;( 40): 1372.
[16] SUMMERS A, et al. Trans Nucl Sci. 1993;( 40): 1372. B
[17] LEYVA A. Informe Técnico de la Salida contratada en octubre de 2005. PRN/7-2/11. AENTA. 2005.
[18] BOUDRY LM, ANTONUK LE. Med. Phys. 1996; 23 (5): 743-753.
[19] ROHR P. Amorphous silicon based matrix detectors for X-ray Imaging. User Meeting Workshop. ESRF. Grenoble, Febrary 2003.
[20] SHIMIZU T, MAEHARA T, MASAHIRO M, et al. Jpn.J.Appl.Phys. 2001; 40: 1244-1245.
[21] IMAGAWA O, YASUDA K, YOSHIDA A. Jpn. J. Appl. Phys. 1989; 66 (10): 4719-4722.
[22] ANTONUK LE, BOUDRY LM, YORKSTON J, et al. Nucl. Inst. Meth. A. 1990; 299: 143-146.

Artículos más leídos del mismo autor/a