Nuclear Scienceshttp://opn.to/a/SxQHT

The NUMEN project: Heavy-Ion Double Charge Exchange reactions towards 0νββ NME determination

El proyecto NUMEN: reacciones de intercambio de cargas dobles de iones pesados hacia la determinación de 0νββ NME

  agodi@lns.infn.it


Abstract

NUMEN proposes cross sections measurements of Heavy-Ion double charge exchange reactions as an innovative tool to access the nuclear matrix elements, entering the expression of the life time of Neutrinoless double beta decay (0νββ). A key aspect of the projectis the use at INFN-Laboratori Nazionali del Sud (LNS) of the Superconducting Cyclotron (CS) for the acceleration of the required high resolution and low emittance heavy-ion beams and of MAGNEX large acceptance magnetic spectrometer for the detection of the ejectiles. The experimental measurements of double charge exchange reactions induced by heavy ions present a number of challenging aspects, since such reactions are characterized by very low cross sections. First experimental results give encouraging indication on the capability to access quantitative information towards the determination of the Nuclear Matrix Elements for 0νββ decay.

Keywords:
acceleration; charge-exchange reactions; cross sections; detection; double beta decay; heavy ions; ion beams; magnetic spectrometers; nuclear matrix; resolution; superconducting cyclotrons.

Resumen

NUMEN propone mediciones de secciones eficaces de reacciones de intercambio de carga doble de iones pesados como una herramienta innovadora para acceder a los elementos de la matriz nuclear, entrando en la expresión del tiempo de vida de la desintegración beta doble sin neutrino (0νββ). Un aspecto clave del proyecto es el uso en INFN-Laboratori Nazionali del Sud (LNS) del ciclotrón superconductor (CS) para la aceleración de los haces de iones pesados de alta resolución y baja emitancia requeridos y del espectrómetro magnético de gran aceptación MAGNEX para la detección de los residuos eyectados. Las mediciones experimentales de reacciones de intercambio de carga doble inducidas por iones pesados presentan una serie de aspectos desafiantes, ya que tales reacciones se caracterizan por secciones eficaces muy bajas. Los primeros resultados experimentales dan una indicación alentadora sobre la capacidad de acceder a información cuantitativa para la determinación de los Elementos de la Matriz Nuclear para la descomposición de 0νββ.

Palabras claves:
aceleración; reacciones de transferencia de carga; secciones eficaces; detección; desintegración doble beta; iones pesados; haces de iones; espectrómetros magnéticos; matriz nuclear; resolución; ciclotrones superconductores.

INTRODUCTION

Neutrinoless double beta (0νββ) decayhasfundamentalimplications on particlephysics, cosmology and fundamentalphysics. Ifobserved, itisconsideredone of the mostpromising ways to probe the Majorana or Dirac nature of neutrino and to haveaccess to itseffective mass. Furthermore, the observation of 0νββ wouldsignalthat the totalleptonnumberisnotconserved.

Since the 0νββ decayprocessinvolves nuclei, itsanalysisnecessarilyimpliesnuclearstructureelements. The 0νββ decay rate can be expressedas a product of threeindependentfactors: the phase-spacefactor, the nuclearmatrixelement (NME) and a termcontaining the effective neutrino masses. Thus, evenif the decay rate will be measured, the knowledge of the NME ismandatory to extract information on the neutrino masses. From an updatedcomparison of the main NME calculations, obtained with variousnuclearstructureframeworks [1]-[5], there are stillsignificantdifferences. In addition some assumption common to differentcompetingcalculation, like the unavoidabletruncation of the many body wave-function, could cause overallsystematicuncertainties.

To access quantitative information, relevant for 0νββdecay NME, the NUMEN projectproposes to use HI-DCE reactionsas a tool [6], [7], [8]. Thesereactions are characterized by the transfer of twochargeunits, leaving the mass numberunchanged, and can proceed by a sequential multi nucleon transfer mechanism or by a double mesonexchange.

Despite 0νββ decay and HI-DCE reactions are mediated by different interactions, theypresent a number of similarities. Amongthat, a keyaspectisthat the initial and finalnuclearstates.Moreover, the transitionoperators are similar, in bothcases Fermi, Gamow-Teller and rank-twotensorcomponents are present; a large linear momentum (~100 MeV/c) isavailable in the virtual intermediate channel; the twoprocesses are non-local and are characterized by two vertices localized in a pair of valencenucleons; they take placein the samenuclear medium; a relevant off-shell propagation through virtual intermediate channels is present.

In thispicture, first pioneering experimental results obtained at the INFN-Laboratori Nazionali del Sud in Catania,using the MAGNEX large acceptance magnetic spectrometer [9], for the 40Ca(18O,18Ne)40Ar reaction at 270 MeV, give encouraging indication on the capability of the proposed technique to access relevant quantitative information. In this wayNUMENhasstartedan experimentalcampaignfocused on DCE reactionsinvolving the nuclei candidatesfor 0νββ decay.

DCE REACTIONS: THE ‘PILOT’ EXPERIMENT

At INFN-LNS weperform the DCE reaction40Ca(18O,18Ne)40Ar at 270 MeV, with the aim to measureaccurately the cross sectionat zero degrees [10]. For thisreasonwehavechosen a particularlyadvantageoussystem, using a beam of 18O and a double magic target as40Ca, choosing the bombardingenergy in such a way to mismatch the competing transfer reactionsleading to the samefinalstate [11]. Crucial for the mainexperimentalchallengesinvolvedhasbeen the use of the CS beamsdeliveredat LNS and the use MAGNEX, a modern high resolution and large acceptancemagneticspectrometer with high resolution in energy, mass and angle [12]. Thisfacilityhasbeenproven to be veryeffective for accurate nuclearstructure and dynamicsstudies [13],[14],[15],[16],[17],[18],[19]. In this "pilotexperiment" wehaveshown [10], for the first time, high resolution and statisticallysignificantexperimental data on heavy-ion double chargeexchangereactions in a wide range of transferredmomenta and thatpreciousinformationstowards NME determinationcould be atourreach.

THE NUMEN PROJECT

To movetowards nuclei candidates for 0νββ decayoneneeds to overcome some experimentallimitsasitisproposed in the NUMEN project. The challengeis to measure rare events under a very high flux of heavyions. Weconsiderthat:

a) The Q-value for DCE reactions on nuclei of interest for 0νββ isnormally more negative than in the case of 40Ca explored in ref. [10]. Thiscouldstrongly reduce the cross sectionatveryforwardangles.

b) The (18O,18Ne) reactionisparticularlyadvantageous, due to the large value of the B(GT) strengths. However, thisreactionis of β+β+ kind, whilemost of the research on 0νββ is in the opposite side. None of the reactions of β-β- kindlookslikeasfavourableas the (18O,18Ne). For example, the (18Ne,18O) requires a radioactivebeam, whichcannot be available with comparableintensity. The proposed (20Ne,20O) hassmaller B(GT), so a sensiblereduction of the yieldisexpected;

d) In some cases gas or implanted targets are necessary, e.g. 136Xe or 130Xe, which are normallymuchthinnerthansolid state ones, with a consequentreduction of the collectedyield;

e) In some cases the energyresolution (abouthalfMeV) isnotenough to separate the ground from the excitedstates in the finalnucleus. Thus, the coincidentdetection of γ-rays from the de-excitation of the populatedstatesismandatory, butat the price of the collectedyield.

In order to start a systematicexploration of all the nuclei of interest for 0νββ decay, an upgraded set-up, able to work with atleasttwoorders of magnitude more luminositythan the present, isnecessary. This goal can be achieved by a substantialchange in the technologiesimplemented in the beamextraction [20], in the control of the beaminducedradioactivity, in the detection of the ejectiles [21-25] and in the powerdissipation of the thin targets [26]. In addition, the projectdemands for an enhancement of the maximum acceptedmagneticrigidity, preserving the geometry and fielduniformity of the magneticfield [27] in order to keep the high-precision of the presenttrajectoryreconstruction. We are alsoinvestigating the possible link between the theoreticaldescription of the 0νββ decay and DCE reactions.

Neverthless the presentlimits of beampower (~100 W) for the CS accelerator and acceptable rate for the MAGNEX focalplane detector (few kHz) allowus to concentrate on somefewcases. In thisframework, wealreadyperform some testsand measurementsboth with the (18O,18Ne) reactionas a probe for the β + β + liketransitions and for the first time alsothe (20Ne,20O) as a probe for β - β - .

Asexample, in the reaction test: 116Sn + 18O at 15 MeV/A wehavemeasuredat 0° <θlab< 10° DCEX reaction116Sn(18O,18Ne)116Cd; CEX reaction116Sn(18O,18F)116In; 2p-transfer 116Sn(18O,20Ne)114Cd; 1p-transfer 116Sn(18O,19F)115In.

In the reaction116Cd + 20Ne at 15 MeV/A wehavemeasuredat 0° <θlab< 8°: DCEX reaction116Cd(20Ne,20O)116Sn; CEX reaction116Cd(20Ne,20F)116In; 2p-transfer 116Cd(20Ne,18O)118Sn; 2n-transfer 116Cd(20Ne,22Ne)114Cd; 1p-transfer 116Cd(20Ne,19F)117In; 1n-transfer 116Cd(20Ne,21Ne)115Cd.

For most of the reactionsstudieddata reductionis in progress and for the reaction116Cd + 20Ne at 15 MeV/Athe analysis are almostcompleted and theresultswill be published in the nextfuture.

CONCLUSIONS

Wehaveshownthat high resolution and statisticallysignificantexperimental data can be measured for DCE processes and thatprecious information towards NME determinationcould be atourreach.

On the basis of theseground-breaking achievement, NUMEN aims to go deepinsight in the HI-DCE studies on nuclei of interest in 0νββ decay, both from the theoretical and the experimentalpoint of view, lookingforwardat the 0νββ NME dermination, although a simple relation between DCE cross sections and ββ- decayhalf-livesisnottrivial and needs to be explored.

References

1 

[1] VERGADOS JD, EJIRI H & SIMKOVIC F. Theory of neutrinoless double-beta decay. Rep. Prog. Phys. 2012; 75(10): 106301.

2 

[2] VOGEL P. Nuclear structure and double beta decay. J Phys. G: Nucl. and Part. Phys. 2012; 39(12): 124002.

3 

[3] ENGEL J & MENÉNDEZ J. Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review. Rep. Prog. Phys. 2017; 80(4): 046301

4 

[4] DELL’ORO S, MARCOCCI S, VIEL M & VISSANI F. Neutrinoless double beta decay: 2015 review. Adv. High Energy Phys. 2016; 2016: 2162659.

5 

[5] MENÉDEZ J. What do we know about neutrinoless double-beta decay nuclear matrix elements?. Disponible en: https://arxiv.org/abs/1605.05059.

6 

[6] CAPPUZZELLO F, et. al. The role of nuclear reactions in the problem of 0νββ decay and the NUMEN project at INFN-LNS. J. Phys.: Conf. Ser. 2015; 630: 12018.

7 

[7] AGODI C, et. al. Heavy Ions Double charge exchange reactions: towards the 0νββ nuclear matrix element determination. Nucl. Part. Phys. Proc. 2015; 265-266: 28-30.

8 

[8] AGODI C, et. al. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination. AIP Conference Proceedings. 2015; 1686: 020001.

9 

[9] CAPPUZZELLO F , AGODI C , CARBONE D, et. al. The MAGNEX spectrometer: results and perspectivesEur. Phys. J. A. 2016; 52(6): 167.

10 

[10] CAPPUZZELLO F , CAVALLARO M, AGODI C , et. al. Heavy-ion double charge exchange reactions: A tool toward 0νββ nuclear matrix elements. Eur.Phys. J. A. 2015; 51(11):145.

11 

[11] BRINK DM, et. al. Kinematical effects in heavy-ion reactions. Phys. Lett. B. 1972; 40: 37-40.

12 

[12] CAPPUZZELLO F , et. al. A broad angular-range measurement of elastic and inelastic scatterings in the 16O on 27Al reaction at 17.5 MeV/u. Nucl.Instr. and Meth. A. 2014; 763: 314-319.

13 

[13] CARBONE D , et. al. First application of the n-9Be optical potential to the study of the 10Be continuum via the (18O,17O) neutron-transfer reaction. Phys. Rev. C. 2014; 90(6): 064621.

14 

[14] CAPPUZZELLO F , et. al. The role of nuclear reactions in the problem of 0νββ decay and the NUMEN project at INFN-LNS. J Phys. Conf. Series. 2015; 630: 012018.

15 

[15] CAVALLARO M , et. al. Using Double Charge Exchange Reactions Towards 0νββ Nuclear Matrix ElementsActa Physica Polonica. 2016; 47(3): 929-935.

16 

[16] CAPPUZZELLO F , et. al. The nuclear matrix elements of 0vββ decay and the NUMEN project at INFN-LNS. J Phys Conf. Series. 2016; 730: 012006.

17 

[17] CAPPUZZELLO F , et. al. Signatures of the Giant Pairing Vibration in the 14C and 15C atomic nuclei. NATURE Communications. 2015; 6: 6743.

18 

[18] PEREIRA D, et. al. Nuclear rainbow in the 16O +27AL system: The role of couplings at energies far above the barrier. Phys. Lett. 2012; 710(3): 426-429.

19 

[19] CAPPUZZELLO F , et. al. New structures in the continuum of 15C populated by two-neutron transfer. Phys Letters B. 2012; 711(5): 347-352.

20 

[20] CALABRETTA L, et. al. Overview of the future upgrade of the INFN-LNS superconducting cyclotron. Modern Physics Letters A. 2017; 32(17): 1740009.

21 

[21] CORTESI M, et. al. Multi-layer thick gas electron multiplier (M-THGEM): A new MPGD structure for high-gain operation at low-pressure. Review of Scientific Instruments. 2017; 88(1): 013303.

22 

[22] MUOIO A, et. al. Silicon carbide detectors study for NUMEN project. EPJ Web of Conferences. 2016; 117: 10006.

23 

[23] CARBONE D , et. al. A mini-phoswich scintillator as a possible stop detector for the NUMEN Project. Results in Physics. 2016; 6: 863-865.

24 

[24] CARBONE D , et. al. Nucl. Instr. and Meth. A (in press)

25 

[25] de GERONIMO G, et. al. IEEE Transactions on Nuclear Science. 2013; 60: 2314.

26 

[26] PINNA F, et. al. submitted to Applied Surface Science. 2017

27 

[27] LAZZARO A, et. al. Field measurement for large quadrupole magnets Nucl. Instr. and Methods A. 2008; 591(2): 394.

 

 

Received: 13/02/2018

Accepted: 29/05/2018